
Abstract—This work presents an efficient procedure for 

evaluating singular integrals arising in the Method of Moment 

analysis of arbitrary wire structures. The singular kernel is 

modeled as an elliptical integral of the first kind and evaluated 

using the Arithmetic Geometric Mean. Numerical integration is 

applied only for no singular kernels. It is shown that the efficient 

singularity removal process reduces the condition number of the 

Method of Moment matrix and the number of base functions 

required to represent the equivalent current. 

Index Terms— Numerical simulation, Moment method and 

Computational electromagnetic. 

I. INTRODUCTION 

Wire structures (consisting of elements with diameters 
much smaller than their lengths) are used in different practical 
problems of electromagnetic scattering, particularly in antenna 
applications. Among the most commonly used geometries can 
be highlighted the circular, spiral, rectangular, elliptical and 
dipoles. Since the scattering problems involving these 
geometries are open (problems where the scattered field 
propagates in all directions without limits), one of the most 
widely used numerical techniques for their analysis is the 
Method of Moments (MoM) [1]. Although the MoM 
efficiency for solving Electric Field Integral Equation (EFIE) 
in the numerical analysis of the electromagnetic scattering by 
wire structures was satisfactorily demonstrated [2]-[4], several 
new algorithms and applications have been investigated in 
order to make the technique more accurate and efficient. The 
main factors that motivate the current research are the use of 
EFIE without approximations, the use of different kinds of 
base and weight functions, the development of efficient 
techniques for treating singularities present in EFIE evaluated 
by MoM and building solutions for analysis of arbitrary 
geometries beyond the investigation of different practical 
applications. 

In the MoM technique, the choice of base functions, for 
the representation of the equivalent current, and weight 
functions is very important for the accuracy and convergence 
of the numerical analysis. However, sophisticated base or 
weight functions may lead to complicated integrands and, 
consequently, singularity removals. To obtain accurate 
numerical results considerable precautions should be taken in 
the singularities treatment [5].  

In the present work a robust numerical technique is 
proposed to remove the singularities arising in the EFIE 
associated with electromagnetic scattering by arbitrary wire 
structures. For MoM analysis triangular base and weight 
functions (TF) are used. The TF, normally, ensures a good 
representation of current physical behavior and provides 
relatively simple integrands in the MoM analysis. In the 

present work the TF is defined over two consecutive 
segments, as illustrated in Fig. 1. The Galerkin method is used 
in the MoM analysis and, consequently, the weight functions 
are defined as well. The technique proposed for singularity 
removal models the singular kernel as an elliptical integral of 
the first kind and evaluates it using the Arithmetic Geometric 
Mean (AGM). Gaussian quadrature is applied only to evaluate 
integrals with no singular kernels.  

 
Fig. 1. Distribution of triangular functions 

II. INTEGRAL EQUATION EVALUATION 

The EFIE for arbitrary wire structures is [6]: 
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where n̂  is the unit vector normal to the wire direction, t, k is 
the wave number, i

tE
 is tangential component of the electric 

incident field, I is the surface current in the wire, ε  is the 
electric permittivity of the medium, r and ′r represent the 
observation and source points, respectively and ( )G ′−r r  is 

the Green free-space function. 
The MoM solution of (1) using TF as base and weight 

functions, leads to integrals in the form: 
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where R is the distance between source and observation 
points, a and b may be equal to 1, α or α′. The integrals in (2) 
have removable singularities whenever the observation point 
is very close to the source point, i.e., when R→0. 

The technique used in this work to treat these singularities 
is redefine (2) as an average around the circumference of the 
source and observation segments: 
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where γ and γ′ are the angles around the circumference of the 
source and observation segments and R1 is 
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Considering the change of variable ( ) ( )2 2γ γ ϕ π′− → −   

(3) can be separated into two parts and rewritten as: 
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where  ( )22
2R R a a′= + + . 

The second term of (5) does not have singularities and is 
numerically evaluated by Gaussian quadrature. The first term 
of (5) has the form of a first kind elliptical integral and 
presents singularities. In this work this term is evaluated using 
Arithmetic Geometric Mean according to the algorithm 
illustrated in Fig. 2 [7]. This procedure leads to highly 
accurate results even for σ → 1 (Singularity).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. AGM algorithm [7] 

III. NUMERICAL RESULTS 

To evaluate the accuracy of the technique proposed we 
consider a dipole with a radius of 0.01 λ0 and a length of 0.47 
λ0, where λ0 is the vacuum wavelength. The excitation is 
performed using the Delta Function Excitation Method [6]. 
The accuracy of the numerical results was verified against the 
result obtained by software 4NEC2 using the following Mean 
Relative Error: 
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where X represents the results obtained by MoM or 4NEC2 
and N is the number of segments used to describe the dipole.  

In the analysis N varied from 9 to 41, the EMR obtained, for 
current distribution, is shown in Fig. 3 and the condition 
number in Fig. 4. In both analyses we consider the situation 
where the technique to remove the singularities is and is not 
applied. As can be verified, when this technique is applied the 
number of base functions required to represent the equivalent 
current can be reduced once the EMR is always less, 
independent of the number of segments used. It can also be 
observed that when the extraction technique is used, the MoM 
matrix is better conditioned, especially when the number of 
segments employed is greater. 

 

Fig. 3. RME with and without singularity removal 

 
Fig. 4. Condition number with and without singularity removal 
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