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Abstract—Mesh-to-mesh data transfer has a wide variety of
applications ranging from field discretization to coupled system
modeling. Up to now, the main drawback of the projection
method is its computational cost. This work presents new
methods which reduce this cost and avoid the resort to linear
systems.
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I. Introduction

The advanced modeling of electric devices –where coupled

phenomena are present– usually requires the development of

a specific computer program resorting to different physical

models, which is often time consuming and application-

oriented thus leading to a narrow scope of use. Along with the

increasing power of computational tools, the need for flexible

software makes the use of indirectly coupled methods in-

creasingly common. These methods present many advantages

such as the the easy replacement of subcodes, the numerical

adaptation of meshes, or easy performing remeshing processes.

The most substantial point is the ability of using different

meshes which are spatially restricted to the absolute useful

parts and numerically adapted. The use of projections has been

show to not significantly decrease the accuracy [1], and that

the efficiency strongly depends on both the coupling scheme

and the data transfer.

After a description of the projection methods, new approaches

using approximated mesh-to-mesh data transfers will be pre-

sented. Numerical applications will allow the measurement

of the efficiency of each method in terms of accuracy and

computational cost.

II. Field projection method

A. Exact field projection

The basis for data transfer from one mesh to another is

the equality between the functions supported by each mesh.

Considering two disconnected meshes denoted by Tm and Ts,

the aim is to solve:
um − us = 0, (1)

at each point of the domain common to the two triangulations,

and denoted Ωc
1. The subscript m refers to the “master” mesh

for which the function um is known, whereas s refers to the

“slave” mesh for which us has to be determined.

Functions um and us are discretized using Whitney ele-

ments and can be expressed by the linear combinations:

um =
∑

wmi
dmi

and us =
∑

wsi
dsi

. Functions wmi
and wsi

generically refer to the basis functions of the master and

slave meshes. dmi
and dsi

are the associated weights, and dmi

represents the source data while dsi
are unknowns.

1This domain may not entirely cover mesh Tm or Ts

Because of the discretization, equation (1) cannot be satisfied

at each point of the domain. We then use a weak form of this

equation defined as:

∀ψ ∈ U 〈um − us, ψ〉U = 0. (2)

Depending on the type of finite element used, U successively

refers to the L2, Hgrad, Hdiv, or H curl functional spaces.

In accordance with the space U, one of the following dot-

products can be used:

(u, v) ∈ L2 〈u, v〉U =

∫

Ωc

u · v, (3a)

(u, v) ∈ HD 〈u, v〉U =

∫

Ωc

u · v + D(u) · D(v), (3b)

where D successively represents grad, curl, or div when

respectively node, edge, or face-based finite elements are used.

In equation (2), ψ is successively replaced by the basis

functions associated to the slave mesh, leading to the conform

Galerkin method. It ensures the slave function us to be the

closest one –according to the norm defined by the considered

inner product– to the function um. The method leads to the

linear system: [M][Us] = [N][Um] where [Um] and [Us] are the

respective arrays of degrees of freedom (DoF) of the functions

um and us. As an example, for the L2 space, the entries for

the two mass matrices [M] and [N] are:

Mi j =

∫

Ωc

wsi
· ws j

and Ni j =

∫

Ωc

wsi
· wm j

. (4)

The evaluation of the sum
∫

wsi
· wm j

requires the determi-

nation of the elementary volumes created by the intersection

of the two meshes. This stage appears as a major drawback

of this method. Despite the existence of efficient intersection

algorithms [2], this method is time consuming. An interesting

way to solve this probelm is the use of approximated values

of Ni j.

B. Approximated field projection

Based on an efficient point location algorithm, a good

approximation of the sum
∫

wsi
· wm j

can be obtained using

a high number of Gauss points. The function wm j
is then

evaluated using the position of the considered Gauss point

in the master mesh. This is competitive in terms of compu-

tational time, and results show (Table I) that the accuracy is

not significantly decreased. However, the overall accuracy is

reduced when the function um has local variations. The use

of a fixed quadrature rule does not take into account these

variations. Adaptive integration schemes [3], [4] is a way solve

this problem as the density of Gauss points is automatically

increased when um varies. This technique was used in this



study and has revealed particularly efficient if um has strong

variations. If the numerical quadrature does not match the

required accuracy, the mesh is virtually refined and quadrature

points are added.

C. Whitney forms interpolation

Another major drawback of the projection method is the

resort to a linear system. It imposes the storage of huge

sparse matrices, in addition with the resolution of this system.

We propose a new method that provides the DoF of the

function avoiding the resort to sparse matrices and linear

system resolutions. This technique is based on the definition of

Whitney forms: the weights of the elements are respectively

the values at nodes, the circulation along edges, the fluxes

through faces, and the inverses of the volumes. For example,

the weight dsi
of the ith edge of the slave mesh is:

dsi
=

∫

γsi

N
edges
m∑
j=1

dm j
wm j
· dγsi

, (5)

where γsi
is the path defined by the edge, and dγsi

is the

infinitesimal vector directed along the edge. This technique

is low memory consuming and is particularly efficient as

no linear system is solved. Moreover, for a given order of

function, the computation of circulations or fluxes requires a

lower number of Gauss points than the thoses required for

volumic integrals. As it was done in II-B, the use of adaptive

integration schemes is also possible.

III. Numerical example

A. Description

In order to evaluate the global efficiency of these methods

(II-B, II-C) in terms of accuracy and computational cost, an

analytic case is studied. The considered meshes are based on

a unitary cube, and are composed of 1.7 106 elements for

the master one and 7.1 105 elements for the slave one. First,

the discretization of the function u = r3 sin(θ)uφ is performed

through the master mesh thereby producing a reference DoF

array. uφ is the spherical coordinates orthoradial unit vector.

The expression of u is chosen in order to be general enough

for the test. Then, the discrete counterpart of u, stemming from

the reference array, is transferred through the second (slave)

mesh. The error is computed making the difference between

the values of the projected function up and the values of the

function defined by the reference array:

ǫ% =

∫
‖up − ud‖D∫
‖ud‖D

(6)

u Analytic

ud up

M. Mesh S. Mesh

Discretization

Projection

ǫ% Error

where ud is the discrete reference function and up the pro-

jected one. These functions are supported by the two different

meshes.

B. Numerical results

For the three methods, edge elements and the L2 functional

space have been considered for numerical applications. 45 and

30 Gauss points have been used respectively in the case of

Method ǫ% (%) Time (s)

Exact field projection 0.45 182

Approximated field projection 0.45 27

Whitney forms interpolation 0.47 6

Table I: Projection error (ǫ%) for edge elements.

Figure 1: Right: Plot of the reference field (master mesh), left:

transferred field using circulation along edges (slave mesh).

approximated projections and for interpolations along each

edge. The three methods widely use loop with independent

procedures for which an OpenMP parallelization is close to the

optimal speedup. Therefore meshes have to be large enough

to obtain substantial acceleration. Figure 1 is a plot of the

reference field and the transferred one. Table I presents values

of the accuracy and computational time for each method.

Computation times are given in for the equivalent sequential

computer code, showing the enhancement induced by the

approximated projection and the circulation along edges.

IV. Conclusion

Data transfer methods are of great interest to model coupled

problems with ease. Previous work [1] has shown that it can

be used to model complex systems. The present work focuses

on the numerical efficiency enhancement of the data transfer

in itself. In a first method, the use of approximated values of

the term Ni j greatly improves the computation cost, while the

accuracy is not significantly decreased. The second method

based on the definition of Whitney forms not only improves

the computation time but also avoids the resort to linear system

and matrix storage.
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