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Abstract—In this paper the optimal convergence condition of
a novel iterative numerical algorithm for the fast analysis of
anisotropic magnetic shields is analyzed. This algorithm is based
on an iterative scheme by which the convolution properties of
the Discrete Fourier Transform are exploited. The theoretical
case of a spheroidal magnetic particle is analyzed in order
to simply introduce the optimal convergence condition of the
proposed iterative algorithm. An example regarding the analysis
of a magnetic shield is finally presented.
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1. INTRODUCTION

Magnetic field H inside a magnetic shield can be expressed
as
H = H; + Hy, (D

where H; is the applied magnetic field generated by the
external sources and H,, is the magnetostatic field contributed
by the magnetization M inside the magnetized material. This
field is related to the magnetic induction B by the expres-
sion B/u, = Hg + H,, + M. The numerical computation of
the magnetostatic field term H;, can be obtained, following
[1], by discretizing the volume into rectangular blocks and
representing magnetization by a discrete distribution of fields
M; at points r;. Here, M; is the corresponding averaged value
on the i" element. The magnetostatic field at r; is then

Hyi = = ) N(ri = 1r)M; 2)
J

where N is the demagnetizing tensor [1] and H,; is the
averaged magnetostatic field related to the i element. A
similar approach can be found in [2], [3]. As the effectiveness
of magnetic shields is based on the high permeability of the
soft magnetic materials, we assume magnetic fields that are not
too high and static or very low frequency of the applied fields.
In such conditions the constitutive relation between variables
M and H can be considered linear and eventually written as
H = M/y, the parameter y being the magnetic susceptibility.
By using this relation in (1) and replacing Hy, in (2) the
following equation is obtained:

H, = Mi/x + ) N(ri - )M, 3)
J

where Hg; is the applied field averaged on the i element.
Solution of Eq. (3) provides magnetizations M; and the whole
magnetic field can be eventually calculated at each point inside
the shield by using Eq. (2) for the magnetostatic field and

superposing it to applied field in Eq. (1). The computation of
magnetic field at any external point can be also obtained for
a known M distribution.

In this paper the novel iterative technique proposed in [4]
is applied to anistropic materials and optimal convergence
conditions are found with reference to the instructive case a a
single rectangular shield under a known external field.

II. THEORETICAL BACKGROUND

The iterative scheme presented in [4] is briefly summarized
in this section. The solution of Eq. 3 can be obtained by the
following iterative scheme:

M = ME + o - [Hy — (MF/y - HE ), 4)

where i index refers to a rectangular block element, Mf‘ is
the magnetization distribution at the k™ iteration, Hfm is the
magnetostatic field associated to magnetization Mf, the term
in the square brackets is the error ef.‘, and « is a relaxation
coefficient.

Magnetostatic field at the k™ iteration is computed by the
formula:

H: = - Z N(r; - r)ME. (5)
J

Here, the convolution product of (5) can be computed very fast
by using the FFT algorithm, whose complexity is O(n log n).

The magnetization distribution is iteratively updated using
(5) and (4) until the error norm ||ef||2 becomes sufficiently
small.

III. CONVERGENCE ANALYSYS

The analysis of the convergence conditions of the iterative
scheme Eq. (4) is based on the Banach Contraction Mapping
theorem. Let I' the functional operator, that in the iterative
scheme (4), maps the discretized magnetization distribution
X; € X into the new (iterated) value I'(x;):

T(x) =X+ [Hy—x;/x = ) Nt =r)x;]  (6)
J

Following this theorem, the iteration (6) converges to its
unique Fixed Point M7, i.e. M = I'(M}), if there exists a
number 0 < A < 1 such that for each x;,y; € X

IC(xi) =Tyl < A+ lIxi = yill2 (N



By exploiting Egs. (6) and (7) we find the convergence
condition

A@) = (1 =a/x)-6G = j)—a-Nxi=rjll <1, (8)

where ¢ is the Kronecker symbol. Given the parameter «, the
value of A can be calculated numerically from Eq. (8). If 1 < 1
the iterative scheme is convergent. Moreover, the smaller is the
value of A, the faster the convergence of the procedure.

IV. OPTIMAL CONVERGENCE CONDITION

So far a single relaxation coefficient has been employed. The
consequences are apparent if related to the instructive case of
a homogeneous spheroidal magnetized body. In this case, the
demagnetizing tensor is a 3x3 diagonal matrix whose diagonal
terms are Ny, N»», and N33. Here, Ny, = N33. Moreover, let us
assume the case of an anisotropic material with susceptivities
X1, x2 and y3. Under these assumptions eq. (8) becomes:

A =max{

To illustrate graphically the convergence behavior of the
method, we assume y, = y3. The three terms inside braces
in eq. (9) are shown in Fig. 1. It is apparent that the 1-st
component has a different dependence on « and the application
of eq. (9) leads to the dotted curve, whose minumum is
attained at .
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Figure 1. Behavior of the three factors in eq. (9) vs. relaxation factor «. The
optimal convergence rate is obtained at @ = o*

If different relaxation coefficients are introduced for each
axis, a better convergence rate can be obtained. To demon-
strate this point, we consider the realistic case of a magnetic
anisotropic shield system composed by a square slab with
side 2 m, relative permeability 5000 in x direction and 2 in y
direction. Here, we assume a3 = a», therefore 1 = A(ay, az).
Figure 2 shows the behaviour of the factor 4 vs. @; and
a,. Here, the global minimum corresponds to the optimal
convergence rate. This behaviour is apparent in Fig. 3 where
is reported the error norm versus iteration number in the two

cases. The convergence rate is much better then could be
obtained by using a single, optimal, relaxation coefficient.
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Figure 2. Behavior of factor A defined in eq. (8), vs. relaxation factors a

and ;. The global minimum corresponds the the optimal values of relaxation
factors.
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Figure 3. Error norm versus iteration number by using a single relaxation

factor (open circle) and different relaxation factors for the two anisotropy
directions (open square).

V. CONCLUSIONS

In this paper the optimal convergence conditions of a
novel iterative algorithm for the fast analysis of isotropic and
anisotropic magnetic shields are analyzed. It is demonstrated
that by using different relaxation factors, a faster convergence
of the iterative computation can be obtained. In the full
paper, practical case study of anistropic magnetic shields and
comparison to FEM computations will be presented.
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