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Abstract—An iterative domain decomposition method is ap-
plied to magnetostatic problems. In our previous methods the
gauge condition is neglected, then the magnetic vector potential is
only one unknown function. On the other hand, it has been well-
known that some theoretical results has been introduced, where
a mixed formulation with the Lagrange multiplier is introduced
in order to impose the gauge condition. Therefore, in this paper,
we formulate again an iterative domain decomposition method
based on a mixed formulation of magnetostatic problem, and
discuss relations with the previous one.
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I. INTRODUCTION

We have introduced an iterative domain decomposition
method to solve quite large scale electromagnetic field prob-
lems; see, for example, Kanayama et al. [7]. In our previous
methods the gauge condition is neglected, then the magnetic
vector potential is only one unknown function. These previous
results focus themselves on the engineering points of view:
the previous formulation enables us to reduce computational
consts in practical large scale simulations. However this for-
mulation yields an indeterminate linear system, it is difficult to
mathematically justify numerical results, for example unique
solvability of the problems and convergency of the approxi-
mate solution.

On the other hand, some theoretical results has been in-
troduced by, for example, Kikuchi [5], [6], where a mixed
formulation with the Lagrange multiplier is introduced in order
to impose the gauge condition. These results focus themselves
on the mathematical point of view: owing to the introduction
of the Lagrange multiplier, their mixed formulation enable us
to prove unique solvability of the problems and convergency
of the approximate solution. However this formulation yields
an indefinite linear system, it is difficult to find an appropriate
iterative solver, which is efficient enough to reduce computa-
tional costs for practical large scale problems.

Now we formulate again an iterative domain decomposi-
tion method based on a mixed formulation of magnetostatic
problem introduced in Kikuchi [5], [6], which enable us to
prove unique solvability of the problems and convergency of
the approximate solution. Moreover, to reduce computational
costs, we simplify our iterative domain decomposition method

into another one, and we discuss relations between the reduced
formulation and the previous one.

II. FORMULATION OF MAGNETOSTATIC PROBLEMS

Let Ω be a polyhedoral domain with its boundary Γ. Let u
denote the magnetic vector potential, f an excitation current
density, and ν the magnetic reluctivity. Following Kikuchi [5],
a mixed weak formulation of magnetostatic problems with the
Lagrange multiplier p is formulated as follows: given f ∈(
L2(Ω)

)3, find (u, p) ∈ V × Q such that{
a(u, v) + b(v, p) = ( f , v), (1a)
b(u, q) = 0, ∀(v, q) ∈ V × Q, (1b)

where V and Q denote functional spaces defined by V :=
{
v ∈

H(rot;Ω); v × n = 0 on Γ
}

and Q := H1
0(Ω), respectively;

a( . , . ) and b( . , . ) denote bilinear forms defined by

a(u, v) :=
∫
Ω

ν rot u rot v dx and b(v, q) :=
∫
Ω

v grad q dx,

respectively; and ( . , . ) denote an inner product of L2(Ω).

III. DOMAIN DECOMPOSITION METHOD

For simplicity, the domain Ω is assumed to be decomposed
into two non-overlapping subdomains Ω(1) and Ω(2) with their
boundaries ∂Ω(1) and ∂Ω(2), respectively; and let γ12 be the
interface between Ω(1) and Ω(2) defined by γ12 := Ω

(1)∩ Ω (2)
.

Then, a two-subdomain problem is introduced by the follow-
ings: for i = 1, 2, find (u(i), p(i)) ∈ V (i)

γ12 × Q(i)
γ12 such that

a(i)(u(i), v (i)) + b(i)(v (i), p(i)) = ( f (i), v (i))Ω(i) , (2a)
b(i)(u(i), q(i)) = 0, (2b)
u(1)× n = u(2)× n, p(1) = p(2) on γ12, (2c)
a(2)(u(2), v (2)(η)) + b(2)( v (2)(η), p(2))
= ( f (1), v (1)(η))Ω(1) + ( f (2), v (2)(η))Ω(2)

− a(1)(u(1), v (1)(η)) − b(1)( v (1)(η), p(1)), (2d)
b(2)(u(2), q (2)(ζ)) = b(1)(u(1), q (1)(ζ)), (2e)

∀(v (i), q(i), η, ζ) ∈ V (i)× Q(i)× Λ × Ξ.
Here, the superscripts denote functions and bilinear forms
restricted into Ω(i); function spaces V (i)

γ12 , Q(i)
γ12 , V (i), Q(i), Λ,

and Ξ are defined by V (i)
γ12 := {v ∈ H(rot;Ω(i)); v × n = 0



on ∂Ω(i)\γ12}, Q(i)
γ12 := {q ∈ H1(Ω(i)); q = 0 on ∂Ω(i)\γ12},

V (i) := {v ∈ H(rot;Ω(i)); v× n = 0 on ∂Ω(i)}, Q(i) := H1
0(Ω(i)),

Λ := {λ : γ12 → R3; λ = (u × n)|γ12 , u ∈ V}, and Ξ :=
{ξ : γ12 → R; ξ = p|γ12 , p ∈ Q}, respectively; and set
u (i)(η) by any extension operator from Λ to V (i)

γ12 such that
η =

(
u (i)(η)× n

)|γ12 , and p (i)(ζ) by any extension operator
from Ξ to Q(i)

γ12 such that ζ = p(ζ)|γ12 . A characterization
of tangential trace spaces Λ and an tangential extension
operator on u (i)(η) has been given in Alonso–Valli [1], Buffa–
Ciarlet [2], Buffa, et al. [3], and Quarteroni–Valli [8].

The equivalency between both formulations and unique
solvability could be obtained as follows:

Theorem 1: There exists a unique solution (u(i), p(i)) ∈
V (i)
γ12 × Q(i)

γ12 of the two-subdomain problem (2). Moreover, the
one-domain problem (1) and the two-subdomain problem (2)
are equivalent.

For i = 1, 2, let E (i)( f , λ, ξ) an extention operator from(
L2(Ω)

)3 × Λ × Ξ to V (i)
γ12 × Q(i)

γ12 defined by E (i)( f , λ, ξ) :=
(u(i), p(i)), where (u(i), p(i)) is the solution of the following
magnetostatic problem:

a(i)(u, v) + b(i)(q, p) = ( f , v)Ω(i) , (3a)
b(i)(u, q) = 0, ∀(v, q) ∈ V (i)× Q(i), (3b)
u× n = λ, p = ξ on γ12 (3c)

Then, a Steklov–Poincaré operator A from Λ × Ξ to (Λ × Ξ)′

is set by

〈A (λ, ξ), (η, ζ)〉 :=
2∑

i=1

{
a(i)( u (i), v (i)) + b(i)( v (i), p (i))

+ b(i)( u (i), q (i))
}
, ∀λ, η ∈ Λ, ∀ξ, ζ ∈ Ξ, (4)

where ( u (i), p (i)) := E (i)(0, λ, ξ) and ( v (i), q (i)) := E (i)(0, η, ζ);
and an interface source χ ∈ (Λ × Ξ)′ is set by

〈
χ, (η, ζ)

〉
γ12

:=
2∑

i=1

{
( f (i), v (i))Ω(i) − a(i)( û (i), v (i)) − b(i)( v (i), p̂ (i))

− b(i)( û (i), q (i))
}
, ∀η ∈ Λ, ∀ζ ∈ Ξ, (5)

where ( û (i), p̂ (i)) := E (i)( f (i), 0, 0). Now we introduce the
following interface problem on γ12:〈

A (λ, ξ), (η, ζ)
〉
γ12
=
〈
χ, (η, ζ)

〉
γ12
, ∀(η, ζ) ∈ Λ × Ξ. (6)

By using the solution (u(i), p(i)) of two-subdomain prob-
lem (2), let us set (λ, ξ) by λ := u(1) × n (= u(2) × n) and
ξ := p(1)(= p(2)). Then, because of (2d)–(2e), (λ, ξ) satisfies
the interface problem (6). On the other hand, once the solution
(λ, ξ) is obtained by solving the interface problem (6), for
i = 1, 2, each pair (u(i), p(i)) ∈ V (i)

γ12 ×Q(i)
γ12 could be found from

the problem (2a) and (2b) in the corresponding subdomain Ω(i),
where the solution (λ, ξ) is regarded as the Dirichlet boundary
on the interface: u(i)× n = λ and p(i) = ξ on γ12. Finally, we
can obtain the solution (u, p) of the one-domain problem (1).

Therefore, error analysis of the approximate solution of the
problem (2) could be reduced into error analysis of the one of
each subdomain problem; For example, when magnetic vector

potential u is approximated by the Nedelec element of the first
order and the Lagrange multiplier p is approximated by the
conventional P1-element.

The interface problem (6) is symmetric, and not positive
definite. Moreover, if f (i) satisfies that div f (i) = 0 in Ω(i),
then p(i) vanishes. These facts implies that, by following
Glowinski et al. [4], the following reduced conjugate gradient
algorithm could be obatined, where the Lagrange multiplier is
not required in the iterative procedure of actual computation:

Choose λ0;

Compute g0 by (7);

w0 := g0;

for k = 0, 1, . . .;

Compute A1(wk, 0) by (8);

αk :=
(
gk, gk

)
/
(
A1(wk, 0),wk,

)
;

λk+1 := λk − αk wk;

gk+1 := gk − αk A1(wk, 0);

βk :=
(
gk+1, gk+1

)
/
(
gk, gk

)
;

If
(
gk+1, gk+1

)
/
(
g0, g0

)
< ε, break;

wk+1 := gk+1 + βk wk;

end;
In the reduced conjugate gradient algorythm, g0 could be
computed by the first component of the following equation:

〈
(g0, δ0), (η, ζ)

〉
γ12
=

2∑
i=1

{
a(i)( ũ (i)

0 , v (i)) + b(i)( v (i), p̃ (i)
0 )

− ( f (i), v (i))Ω(i) + b(i)( ũ (i)
0 , q (i))

}
, ∀(η, ζ) ∈ Λ × Ξ, (7)

where ( ũ (i)
0 , p̃

(i)
0 ) := E (i)( f (i), λ0, 0); and A1(wk, 0) could be

computed by the first component of the following equation:

〈
A (wk, 0), (η, ζ)

〉
γ12
=

2∑
i=1

{
a(i)( û (i)

k , v (i))

+ b(i)( v (i), p̂ (i)
k ) + b(i)( û (i)

k , q (i))
}
, ∀(η, ζ) ∈ Λ × Ξ, (8)

where ( û (i)
k , p̂

(i)
k ) := E (i)(0,wk, 0).

This algorythm is based on abstract mathematical analysis.
Therefore, we can easily extend the algorythm into other larger
scale computations of magnetic field problems, for example,
eddy current problems, etc.
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