
Abstract— The classification of similar targets from scattered 

electromagnetic signals is a challenging problem due to the strong 

dependency to aspect angle. In order to classify a target 

effectively, distinguishable features should be extracted and 

adequately processed to gain independency from the adverse 

effects of aspect angle. In this study, an electromagnetic target 

classification method for spherical targets under strong noise is 

proposed. First, a novel feature set, which can be extracted 

directly from scattered time domain signals, is introduced. Next, 

it is shown that this novel feature set carries aspect independent 

representation of the targets by analysis of the principle 

components. Finally, cross validation learning strategy is used for 

evaluation of the proposed feature set. The results show that, up 

to -20 dB SNR, perfectly conducting spherical targets can 

effectively be recognized. 

Index Terms— Radar, Feature Extraction, Classification. 

I. INTRODUCTION 

Target recognition from the back-scattered signals of 

similar targets is a challenging task [1-3] even for targets with 

simple geometry due to complicated scattering mechanisms 

one of which is aspect angle dependency.  

II. GENERATION OF SCATTERED SIGNALS 

The scattered electric fields can be expressed in terms of 

Hertz and Debye potentials as in [2]. In this study, target 

responses are numerically synthesized with these expressions 

for a plane wave excitation which is linearly polarized in x-

direction and propagates in z-direction (Figure 1).  

The far field scattered responses are computed using 

MATLAB 7.1 in frequency domain over a bandwidth from 

zero to 12 GHz at 873 frequency sample points with frequency 

resolution of 13.75 MHz which can be regarded as resonance 

region. These responses are also obtained at φ= π/2 plane, with 

a radial distance of 72 cm from the sphere center, for twelve 

different Bistatic Aspect Angles (BAA), 180- θ = θb = 10, 20, 

… 180 degrees in Figure 1.  

 
Fig. 1. The problem geometry used to generate electromagnetic signals 

scattered from the spherical targets 

After getting frequency responses, time-domain scattered 

fields are computed by using Gaussian windowing, inverse fast 

Fourier transformation (IFFT) and zero padding to get a 5 ps 

resolution, which is enough to observe the frequency range up 

to 12 GHz. The resulting time signals have 1024 sample points 

with a total time span of 5.115 ns (Figures 2 and 3).  

 
Fig. 2. The scattered  time domain signals for the conducting sphere of  radius 

2.4 cm at the bistatic aspect angles of  60° (red), 90° (green) and 120° (blue) .  

 
Fig. 3. The scattered  time domain signals for the conducting sphere of  radius 

2.4cm (red), 3.6cm (green) and 4.8cm (blue) at bistatic aspect angle of  100°. 

 

The noisy scattered time domain signals at all the aspect 

angles stated above are synthesized at the signal-to noise ratio 

(SNR) levels of 20, 10, 0 and -20 dB to be used for classifier 

design and for performance testing. 

III. STRUCTURAL FEATURE EXTRACTION AND PROCESSING  

Typical scattered signals in Figure 2 and Figure 3 show 

that these signals can be divided into four sub-waves. Analysis 

of these sub-waves shows that the amplitude and duration of 

these 4 sub-waves differ depending on the radius of the target. 

Thus, if aspect angle effects can be eliminated, these sub-wave 

properties (i.e. structural features) can be used to classify 

similar spheres with different radii. 

The peaks and durations of these four sub-waves constitute 

a structural feature set for the corresponding scattered signal 

(Figure 4). For instance, the peak value of the first wave is 
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named as FPA (First Peak Amplitude) and the duration 

between the first zero crossing prior to FPA and FPA is named 

as FWLH (First Wave Left Half). Similarly, the duration 

between the first zero crossing after FPA and FPA is named as 

FWRH (First Wave Right Half). If a similar strategy is used to 

extract corresponding structural features for the remaining 

three sub-waves shown in Figure 4, SPA (Second Peak 

Amplitude), SWLH (Second Wave Left Half), SWRH (Second 

Wave Right Half); TPA (Third Peak Amplitude), TWLH 

(Third Wave Left Half), TWRH (Third Wave Right Half); 

QPA (Quartus Peak Amplitude) QWLH (Quartus Wave Left 

Half), QWRH (Quartus Wave Right Half), can be obtained. 

 

 
Fig. 4. Extraction of the proposed features from a scattered signal  

 

Moreover, DP12 (Duration between peaks 1-2), DP23 

(Duration between peaks 2-3); DP34 (Duration between peaks 

3-4) that represent peak occurrence timings are computed. 

Finally, using the above introduced structural features, which 

are obtained directly from the signal, is concatenated with 

slope features representing how fast a peak occur after a zero 

crossing and how fast a peak drops to zero. (These features are 

named as: FWLS=FPA/FWLH (First Wave Left Slope), 

FWRS=FPA/FWRH (First Wave Right Slope) and similarly 

SWLS=SPA/SWLH, SWRS=SPA/SWRH, TWLS=TPA/TWLH, 

TWRS=TPA/TWRH QWLS=QPA/QWLH, QWRS=QPA/QWRH). 

The extraction of above mentioned 23 features for 18 BAA 

results with a 441 dimensional feature space for each sphere. 

The dependency of extracted features to sphere radius and 

BAA is controlled using the analysis of principle components 

[3]. Application of analysis generated 7 uncorrelated principle 

components with contributions 93.0765%, 2.42%, 1.74%, 

1.08%, 0.82%, 0.58%, 0.28%. In depth analysis of these 

components also show that the modified feature space is not 

dependent to aspect angle in representing spherical targets 

since they become linearly separable (Figure 5). 

 
Fig. 4. Feature space after PCA  

IV. PERFORMANCE EVALUATION AND RESULTS 

In this study, classification of 4 spherical targets (i.e. radii: 

1.8cm, 2.4cm, 3.0cm, and 3.6cm) is simulated. Feature vectors 

extracted for each sphere for 18 BAA generates 18x4=72 

samples for training and testing. Due to this small sample set, a 

K-fold partition of the data set is created [5]. For each of K 

experiments, K-1 folds are used for training and the remaining 

fold for testing. The advantage of K-fold cross validation is 

that it prevents over-fitting by systematically using all the 

examples in the data set are for both training and testing. 

Extensive experimentation shows that K=9 provides best 

results (Tables 1, 2 and 3). 

TABLE I 

ACCURACY (CORRECT CLASSIFICATION) PERFORMANCE 

Accuracy (%) Sphere 1 Sphere 2 Sphere 3 Sphere 4 

SNR=∞ 99.54 99.63 99.82 99.63 

SNR=20 dB 99.07 98.89 99.58 99.86 

SNR=10 dB 98.94 99.03 98.98 99.91 

SNR= 0 dB 97.77 96.01 97.63 99.49 

SNR=-20 dB 95.69 85.46 87.50 99.68 

TABLE II 

SELECTIVITY PERFORMANCE  

Accuracy (%) Sphere 1 Sphere 2 Sphere 3 Sphere 4 

SNR=∞ 98.33 99.26 99.81 99.54 

SNR=20 dB 98.30 99.26 99.63 99.86 

SNR=10 dB 98.15 98.70 98.43 99.50 

SNR= 0 dB 96.67 91.11 97.03 98.67 

SNR=-20 dB 94.63 76.67 82.69 98.17 

TABLE III 

SENSITIVITY PERFORMANCE 

Accuracy (%) Sphere 1 Sphere 2 Sphere 3 Sphere 4 

SNR=∞ 99.94 99.75 99.81 99.63 

SNR=20 dB 99.94 98.77 99.53 99.86 

SNR=10 dB 99.20 99.14 99.54 99.91 

SNR= 0 dB 98.14 97.65 98.24 99.49 

SNR=-20 dB 96.05 88.40 92.31 99.68 

V. DISCUSSIONS 

The results show very high performance on classification of 

spherical targets by eliminating diverse effect of aspect angle 

dependency. Moreover, the above mentioned results are 

obtained for the folds that are ordered according to aspect 

angle (i.e. hardest case due to high difference BAA). 

Application of the same strategy in Section IV to randomly 

generated folds result with almost 100% performance. These 

results show the potential of the proposed novel feature set in 

further applications including dielectric targets.  
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