
Abstract—The nonconforming voxel finite element method 

(NVFEM) is an alternative to conventional mesh generation that 

uses purely rectangular elements. Its main drawback is the need 

to approximate boundaries that would otherwise pass through 

the interior of the elements. By using computed basis functions,  

boundaries inside elements are permitted. Results for a 

magnetostatic problem demonstrate the improved accuracy of 

the method, compared to conventional NVFEM. 

Index Terms—Finite element methods, magnetostatics, 

adaptive mesh refinement. 

I. INTRODUCTION 

The nonconforming voxel finite element method (NVFEM) 

is an alternative to conventional finite element (FE) mesh 

generation, proposed by Odawara et al. [1] for analysis of 

magnetic field problems. The problem domain is recursively 

subdivided into cubes, and the cubes that are undivided at the 

end are taken to be the finite elements. Compared to 

traditional meshing, the strengths of the method are its 

simplicity, efficiency, robustness and suitability for use with 

multigrid schemes [2].  

It has, however, one drawback: the FE mesh does not match 

the problem geometry, meaning that the boundaries and 

material interfaces pass through the interior of the elements. 

The true interfaces have to be approximated in a “staircase” 

fashion so that each element lies on one side of the interface or 

the other, but this leads to a loss of accuracy. There has been 

an attempt to remedy this by adjusting the material properties 

within elements straddling an interface [3]. We propose an 

alternative: the use of elements that permit material 

discontinuities within them, sometimes called “composite”  

[4][5]. The specific technique we use is called the method of 

computed basis functions (CBFs) [6][7].  

II. THE NONCONFORMING VOXEL FEM 

We consider the 2D version of the method. We solve a 

differential equation of the form      for an unknown 

potential  . The partial differential operator   depends on the 

the material properties at each point. 

Place the problem domain, Ω, in a rectangular box. There 

are a number of regions within Ω, each containing a different 

material. Subdivide the box initially into    equal boxes. 

Consider each in turn. If a box is entirely inside or entirely 

outside each region, it contains only one material and is 

designated “uniform”. Otherwise, subdivide it into four equal 

smaller boxes, and so on. Continue this for L levels of 

subdivision, i.e., until all the non-uniform boxes are the result 

of   subdivisions. 

During this process there will arise “hanging” nodes, i.e., 

nodes that lie on the edge of an undivided box, rather than at 

one of its corners. If, during the subdivision, a second hanging 

node is placed on the edge of a box, that box is itself 

subdivided, even it is uniform. In this way, the final mesh does 

not have any “second-level” hanging nodes. Each remaining 

hanging node is handled by constraining its potential to be the 

average of the potentials of the nodes at the ends of its edge.  

At the end of this process the   resulting boxes, which are 

of various sizes, are taken as finite elements (Fig. 1(a), (b)). 

The majority of the elements will, by construction, be uniform 

and can be processed in the usual way, employing the standard 

basis functions of such an element [8]. 

However, some of them – clustered around the boundaries 

of the regions – are nonuniform. In conventional NVFEM, 

standard basis functions are used for these elements too, but it 

is more accurate to compute special basis functions that take 

into account the material discontinuities within the element. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 1 (a) Mesh of the magnetostatic problem (NVFEM;  =4,  =4); (b) 

enlarged view (NVFEM); (c) enlarged view (CBF-cells,   =3 ) 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43

0.6

0.62

0.64

0.66

0.68

0.7

0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43

0.6

0.62

0.64

0.66

0.68

0.7

Computed Basis Functions and the Nonconforming 

Voxel Finite Element Method 

M. Nazari, J. P. Webb 
Department of Electrical and Computer Engineering, McGill University, H3A 0E9, Montreal, Canada 

moein.nazarirastehkenari@mail.mcgill.ca, jon.webb@mcgill.ca 



III. COMPUTED BASIS FUNCTIONS 

In [6][7] a CBF method was described that employs a finite 

difference grid within each element to compute the basis 

functions. The grid is identical, and regular, in every element 

of the mesh. Here, we use a different approach that is more 

suited to the nature of the problem. 

Continue to subdivide the nonuniform elements as before, 

for a further    levels of subdivision. This time, allow 

arbitrary-level hanging nodes when these arise on edges of 

elements. A box at the end of this process that was not present 

at the beginning (Fig. 1(c)) is called a “CBF-cell”. 

Consider the set of edges of nonuniform elements. We build 

two “edge functions” per edge, each of which has the value 1 

at one end of the edge and 0 at the other. The edge functions 

are found by solving      as a 1D FE problem, taking into 

account the varying material property along the edge.  The 1D 

mesh corresponds to the edges of the CBF-cells. 

Now consider each nonuniform element. Four CBFs are 

found by solving      using FEM four times. Each CBF 

takes the value 1 at one of the nodes of the element and 0 at 

the other three nodes. The previously-computed edge 

functions provide the boundary conditions, so the FE problem 

is entirely local, i.e., confined just to one element. The FE 

mesh for an element is defined by the CBF-cells within it. 

Since the basis functions computed with this procedure 

solve      approximately, they will tend to satisfy the 

physically correct changes in gradient across the material 

interfaces within the element and will give global solutions 

that respect the region boundaries. For fixed   , the 

computational cost of computing all the basis functions and 

assembling the   FE local matrices is  ( ), the same as it is 

for conventional matrix assembly. 

IV. NUMERICAL RESULTS 

In this section we compare the performance of the proposed 

method with conventional NVFEM. For this purpose, we use a 

magnetostatic problem and compute the magnetic scalar 

potential  . We solve the Poisson equation          in a 

          domain   filled with air, containing four 

cylinders of radius          and relative permeability 

      (Fig. 1). The Dirichlet boundary conditions 

         and     are imposed on the upper and lower 

edges of the domain, respectively, creating a magnetic field 

that, in the absence of the cylinders, would be uniform and 

vertical. 

Fig. 1(a) and (b)  illustrate  the mesh for the NVFEM. As 

expected, most of the refinement has occurred at the 

boundaries of the cylinder. To apply our method, local FE 

problems for all nonuniform elements are constructed. Fig. 

1(c) shows the CBF-cells of the local FE problems. 

The problem is solved in three ways: using conventional 

NVFEM, using the proposed method in which the nonuniform 

elements are subdivided three times (    ) and using the 

proposed method with     . The errors in the magnetostatic 

stored energy in all three cases are shown in Fig. 2. The 

number of elements is increased by increasing  , keeping   

and    fixed. The reference energy was obtained using 

commercial FE software [9], with a mesh of         fourth-

order triangular elements and is estimated to be accurate to 

        It can be seen from these plots that a solution at a 

specified precision can be obtained with the proposed method 

with many fewer degrees of freedom than with NVFEM. For 

example, an error of       can be achieved with      with 

about        , which is     times smaller than with 

conventional NVFEM. 

V. CONCLUSION 

By taking into account the effect of a material interface 

within a finite element, CBFs can greatly increase the 

accuracy of NVFEM. 
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Fig. 2 Error in energy versus number of elements, conventional  

NVFEM in comparison with the proposed method 
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