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Abstract—A stochastic finite integration technique formulation  in which 7 andi, are the vectors of the fluxes of the electric
of an electrokinetic problem is derived applying the polynanial  current through the faces ¢f and G, D is the volume-face
chaos expansion. The formulation is able to provide the un- jncigence matrix off, D, is the incidence matrix between the

certainty quantification of fields and integral quantities. It is 5 5 . . )
applied to a test case representing an industrial applicatn and volumes ofgG and the faces ofj,. The irrotationality of the

the obtained results are in good agreement with those calcated €lectric field is expressed, in exact form, as

by means of Monte Carlo simulations, with the advantage of a

dramatic reduction of the computational time. v=—-Gop, )
Index Terms—Electrokinetics, Finite Integration Technique,

Polynomial Chaos Expansion. in which v is the vector with the circulations of the electric

field along the edges ofj, ¢ is the vector of the electric
potentials at the nodes ¢f andG is the edge-node incidence
matrix of G. As it is well known, for any pair of dual grids
Electromagnetic computations rely on the perfect knowg” — _. Ohm's law is discretized in approximate form, in

edge of material parameters. However, for a wide range @kms of a discrete material matrM,, as follows
examples in electrical engineering, some uncertainty Ishou

be associated with that knowledge in the modeling process. i=M,uv. (3)

In order to quantify the uncertainty of the output quansitier, e giscrete material matridd,, can be derived for generic
of interest coming from the lack of knowledge of the iNPUboyhedral primal gridss, using the energetic approach in-
material parameters, the Monte Carlo (MC) method can Reqyced in [5] for a tetrahedral grid and extended in [6]
applied. However the convergence of the estimates of the generic polyhedral grids. Lastly boundary conditiome a
tistical moments versus the number of required determmnisf,oqyced. For a Dirichlet problem, here considered, such

simulations is slow and, if the single deterministic congian . qitions can be written in exact form in terms of the
is not fast enough, the total computational time becomes ptgiqence matrixD;, as follows [7]

hibitive. The spectral stochastic finite element methodetlas B
on the polynomial chaos expansion (PCE) is introduced in [1] Di¢ = ¢y, 4)

and is able to dramatically reduce the computational time 0 which ¢, is the vector of the electric potential on the

many electromagnetic problems, e.g. [2]. In the presenépa
for the first time the PCE is formulated for the finite integwat %oundary@Q, hence assumed known.

technique (FIT) [3], and the specific structure of the resglt I1l. STOCHASTICFIT FORMULATION

stochastic FIT formulation is determined The electric conductivity is now assumed to be a spatial
The prototype problem under analysis is of electrokinetigg|d function of a random even? and thus can be written
type. More specifically, in order to test the formulation, ag o(r,¥), r being the position vector. PCEs can now be
typical system for resistance welding is analyzed [4]. introduced for the electric potential, the electric fielddahe
current density. From these expansions analogous expansio
follows for the discrete variables of FIT. Precisely, it is
The stochastic FIT formulation here proposed starts from
a deterministic FIT formulation, derived by discretizinget v(J) = Zvawa(ﬁ), )
spatial region of the probleff by a pair of three-dimensional o
oriented dual gridsg and G. In order to manage boundaryin which (1) are the chosen polynomials with multi indices
conditions in a general waynlike standard FIT, the pair o, supposed to be orthonormal in a chosen probabilistic space
of two-dimensional oriented dual grid§;, and G, are also so thatE[¢)4(9)1s(9)] = dag, in which E[] indicates the
introduced, wherej; is the trace of the primal grig/ onto statistical mean value. In this way, assumes the meaning
the boundandQ of Q andg, is its dual [7]. The continuity of the projection of the stochastic variahl@) onto, () so
law for currents is discretized, in exact form, as follows thatv, = E[v(¥)1 (9)]. In a similar way PCE is introduced
U for the other variables(19), 7,(19), @ (¥9), v, (). Substituting
Di + Dyt = 0, M) these expansions of the discrete variables, assumed stigha

|I. INTRODUCTION

II. DETERMINISTIC FIT FORMULATION



into the exact balance equations (1), (2) and projectindpén t
stochastic space onto each polynomigl(¢#) the stochastic

equations follow. In fact from (1) it ensues N IS N G N R
~ ~ -~ dY O o, 9
B [a(4) (BF() + Byis(0)] = 0 © [ :
S Al
so that
ﬁza + ﬁbiba =0. (7) Figure 1. 2D section of the considered example, the deptighbegual tos,
with s = 10 mm andd = 1 mm.
In a similar way, from (2) it follows
x10~°
vo = -Gy, 8 ° —PC
? ( ) sl ---Monte Carl
As a result all the balance equations are leftltered after
projection in the probabilistic space. All these equatioan 4
be re-written in the following forms 54
(I, ® D)I + (I, ® D), = 0, 9) o
V=—-1G), (10) .
in which n is the number of polynomialg,,(¥) in the PCE, 0
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® indicates tensor produd,is the vector constituted by sub-
vectorsi, and I, is the vector constituted by sub-vectors
b IN similar way'V is the vector constituted by sub-vectors
v, and ® is the vector constituted by sub-vectaps,. It is
noted that(I,, ® G)” = —(I,, ® D). By projecting (3) in the
stochastic space onto each polynomial(+) it follows

I=N,V,

Figure 2. Probability density function of the curreht.

is estimated in the situation in whidhh = V3 = 1 andV, = 0.
The variation of the probability density function (pdf) &f
(11) for an increase of the numbgrof polynomials used for each
. . . ] ~independent random variable in the PCE, maintains below 1%
in which N,; is a block matrix whosex3-th block Noas IS \when p is greater than 3. For = 4 the pdf of the current
an [-order matrix, which is the discrete constitutive matriy, 5ssumes the form shown in Fig. 2. The solution of the
of a deterministic problem in which the spatial distribusystem of equations is performed by a proper iterative splve
tion of conductivity is substituted by the spatial disttion 5 hreconditioned conjugate gradient algorithm, and takesta
Efo(r, V) Ya(9)9s(9)]. Lastly boundary conditions can besy seconds on a 2.3 Ghz Intel Core i7. The accuracy of the
discretized in the form results can be checked by a Monte Carlo method, by repeating

Dl oy, = ¢y the deterministic FIT simulation withof'f random choices

of the random variables. This computations require aliout

As a result all the boundary conditions equations are lefburs. The pdf obtained with stochastic FIT is in agreement
unaltered after projection in the probabilistic space. All thesgyith the pdf given by Monte Carlo simulations with an error

(12)

equations can be re-written in the following forms
(I, 9Dy)T® = &, (13)

in which @, is the vector constituted by sub-vectapg,,. It

is thus noted that only the discrete material equations kave |,
be modified in the stochastic formulation with respect to the

deterministic formulation.

IV. NUMERICAL RESULTS

The 3D problem shown in Fig. 1 is considered. Three elec-

trodes over a conductive substrate exhibit contact resista
modeled by three statistically independent conductivitie,
o2, o3, With uniformly distributed probability density functisn
in the rangel.41 MS/m— 11.3 MS/m.

A tetrahedral grid is generated, with = 5,081 nodes,

whose further refining introduces variations in the pogdnti [6]
distribution lesser that 1% in the energy norm. A FIT dis-

cretization is introduced, using the basis functions ithiced
in [5] for tetrahedral grids. The PCE of the electric currént

below 5%.
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