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Abstract—A stochastic finite integration technique formulation
of an electrokinetic problem is derived applying the polynomial
chaos expansion. The formulation is able to provide the un-
certainty quantification of fields and integral quantities. It is
applied to a test case representing an industrial application and
the obtained results are in good agreement with those calculated
by means of Monte Carlo simulations, with the advantage of a
dramatic reduction of the computational time.

Index Terms—Electrokinetics, Finite Integration Technique,
Polynomial Chaos Expansion.

I. I NTRODUCTION

Electromagnetic computations rely on the perfect knowl-
edge of material parameters. However, for a wide range of
examples in electrical engineering, some uncertainty should
be associated with that knowledge in the modeling process.
In order to quantify the uncertainty of the output quantities
of interest coming from the lack of knowledge of the input
material parameters, the Monte Carlo (MC) method can be
applied. However the convergence of the estimates of the sta-
tistical moments versus the number of required deterministic
simulations is slow and, if the single deterministic computation
is not fast enough, the total computational time becomes pro-
hibitive. The spectral stochastic finite element method based
on the polynomial chaos expansion (PCE) is introduced in [1]
and is able to dramatically reduce the computational time in
many electromagnetic problems, e.g. [2]. In the present paper
for the first time the PCE is formulated for the finite integration
technique (FIT) [3], and the specific structure of the resulting
stochastic FIT formulation is determined

The prototype problem under analysis is of electrokinetics
type. More specifically, in order to test the formulation, a
typical system for resistance welding is analyzed [4].

II. D ETERMINISTIC FIT FORMULATION

The stochastic FIT formulation here proposed starts from
a deterministic FIT formulation, derived by discretizing the
spatial region of the problemΩ by a pair of three-dimensional
oriented dual grids,G and G̃. In order to manage boundary
conditions in a general way,unlike standard FIT, the pair
of two-dimensional oriented dual grids,Gb and G̃b are also
introduced, whereGb is the trace of the primal gridG onto
the boundary∂Ω of Ω and G̃b is its dual [7]. The continuity
law for currents is discretized, in exact form, as follows

D̃ĩ+ D̃bĩb = 0, (1)

in which ĩ and ĩb are the vectors of the fluxes of the electric
current through the faces of̃G and G̃b, D̃ is the volume-face
incidence matrix of̃G, D̃b is the incidence matrix between the
volumes ofG̃ and the faces of̃Gb. The irrotationality of the
electric field is expressed, in exact form, as

v = −Gϕ, (2)

in which v is the vector with the circulations of the electric
field along the edges ofG, ϕ is the vector of the electric
potentials at the nodes ofG andG is the edge-node incidence
matrix of G. As it is well known, for any pair of dual grids
G

T = −D̃. Ohm’s law is discretized in approximate form, in
terms of a discrete material matrixMσ as follows

ĩ = Mσv. (3)

The discrete material matrixMσ, can be derived for generic
polyhedral primal gridsG, using the energetic approach in-
troduced in [5] for a tetrahedral grid and extended in [6]
for generic polyhedral grids. Lastly boundary conditions are
introduced. For a Dirichlet problem, here considered, such
conditions can be written in exact form in terms of the
incidence matrixD̃b as follows [7]

D̃
T

b ϕ = ϕb, (4)

in which ϕb is the vector of the electric potential on the
boundary∂Ω, hence assumed known.

III. STOCHASTIC FIT FORMULATION

The electric conductivity is now assumed to be a spatial
field function of a random eventϑ and thus can be written
as σ(r, ϑ), r being the position vector. PCEs can now be
introduced for the electric potential, the electric field, and the
current density. From these expansions analogous expansions
follows for the discrete variables of FIT. Precisely, it is

v(ϑ) =
∑

α

vαψα(ϑ), (5)

in whichψα(ϑ) are the chosen polynomials with multi indices
α, supposed to be orthonormal in a chosen probabilistic space
so thatE[ψα(ϑ)ψβ(ϑ)] = δαβ, in which E[·] indicates the
statistical mean value. In this wayvα assumes the meaning
of the projection of the stochastic variablev(ϑ) ontoψα(ϑ) so
thatvα = E[v(ϑ)ψα(ϑ)]. In a similar way PCE is introduced
for the other variables̃i(ϑ), ĩb(ϑ), ϕ(ϑ), ϕb

(ϑ). Substituting
these expansions of the discrete variables, assumed stochastic,



into the exact balance equations (1), (2) and projecting in the
stochastic space onto each polynomialψα(ϑ) the stochastic
equations follow. In fact from (1) it ensues

E

[

ψα(ϑ)(D̃ĩ(ϑ) + D̃bĩb(ϑ))
]

= 0 (6)

so that

D̃ĩα + D̃bĩbα = 0. (7)

In a similar way, from (2) it follows

vα = −Gϕα. (8)

As a result all the balance equations are leftunaltered after
projection in the probabilistic space. All these equationscan
be re-written in the following forms

(In ⊗ D̃)̃I+ (In ⊗ D̃b)̃Ib = 0, (9)

V = −(In ⊗G)Φ, (10)

in which n is the number of polynomialsψα(ϑ) in the PCE,
⊗ indicates tensor product,Ĩ is the vector constituted by sub-
vectors ĩα and Ĩb is the vector constituted by sub-vectors
ĩbα. In similar wayV is the vector constituted by sub-vectors
vα andΦ is the vector constituted by sub-vectorsϕα. It is
noted that(In ⊗G)T = −(In ⊗ D̃). By projecting (3) in the
stochastic space onto each polynomialψα(ϑ) it follows

Ĩ = NσV, (11)

in which Nσ is a block matrix whoseαβ-th blockNσαβ is
an l-order matrix, which is the discrete constitutive matrix
of a deterministic problem in which the spatial distribu-
tion of conductivity is substituted by the spatial distribution
E[σ(r, ϑ)ψα(ϑ)ψβ(ϑ)]. Lastly boundary conditions can be
discretized in the form

D̃
T

b ϕα = ϕbα. (12)

As a result all the boundary conditions equations are left
unaltered after projection in the probabilistic space. All these
equations can be re-written in the following forms

(In ⊗ D̃b)
T
Φ = Φb, (13)

in which Φb is the vector constituted by sub-vectorsϕ
bα. It

is thus noted that only the discrete material equations haveto
be modified in the stochastic formulation with respect to the
deterministic formulation.

IV. N UMERICAL RESULTS

The 3D problem shown in Fig. 1 is considered. Three elec-
trodes over a conductive substrate exhibit contact resistances
modeled by three statistically independent conductivities σ1,
σ2, σ3, with uniformly distributed probability density functions
in the range1.41 MS/m− 11.3 MS/m.

A tetrahedral grid is generated, withn = 5, 081 nodes,
whose further refining introduces variations in the potential
distribution lesser that 1% in the energy norm. A FIT dis-
cretization is introduced, using the basis functions introduced
in [5] for tetrahedral grids. The PCE of the electric currentI1

Figure 1. 2D section of the considered example, the depth being equal tos,
with s = 10 mm andd = 1 mm.
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Figure 2. Probability density function of the currentI1.

is estimated in the situation in whichV1 = V3 = 1 andV2 = 0.
The variation of the probability density function (pdf) ofI1
for an increase of the numberp of polynomials used for each
independent random variable in the PCE, maintains below 1%
when p is greater than 3. Forp = 4 the pdf of the current
I1 assumes the form shown in Fig. 2. The solution of the
system of equations is performed by a proper iterative solver,
a preconditioned conjugate gradient algorithm, and takes about
31 seconds on a 2.3 Ghz Intel Core i7. The accuracy of the
results can be checked by a Monte Carlo method, by repeating
the deterministic FIT simulation with105 random choices
of the random variables. This computations require about10
hours. The pdf obtained with stochastic FIT is in agreement
with the pdf given by Monte Carlo simulations with an error
below 5%.
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