
Abstract—A modified precise integration time domain (PITD) 

method is proposed for solving Maxwell’s equations. Due to the 

use of the split step scheme, this method can reduce the 

requirement of computation time and storage space in 

comparison with the conventional PITD method. The numerical 

dispersion relation is derived and analyzed. It is shown that this 

method has better dispersion performances in comparison with 

the alternating direction implicit finite difference time domain 

(ADI-FDTD) method. Numerical examples are given to verify 

the accuracy and memory efficiency of this method. 

Index Terms—Finite difference methods, Maxwell equations, 

time domain analysis. 

I. INTRODUCTION 

In order to improve the computation efficiency of the 

finite difference time domain (FDTD) method, the precise 

integration time domain (PITD) method has been proposed 

[1]. In this method, the central difference scheme is used to 

discretize Maxwell’s equations in space, and the precise 

integration technique is used to advance the field components 

in time. Although the Courant-Friedrich-Levy (CFL) 

condition is not totally removed, the PITD method can 

maintain stability despite using a time step size much larger 

than the CFL limit [2]. Besides, compared with the 

unconditional stable methods, such as alternating direction 

implicit (ADI) [3], [4], locally 1-D (LOD) [5], [6] and split 

step (SS) [7], the PITD method has lower numerical 

dispersion errors, and its numerical dispersion errors can be 

made nearly independent of the time step size. These 

properties make the PITD method especially suitable for the 

problems where very fine meshes with respect to the 

wavelength are required. However, the PITD method has the 

drawback of high memory requirements when analyzing large 

geometries, which may limit its further applications.  

In this paper, based on the split step scheme [7], a 

modified version of precise integration time domain method, 

referred as SS-PITD, is proposed. In it, the conventional 

PITD calculation is factorized into two sub-steps procedures, 

and each one only needs the solution of a number of 1-D 

wave equations. This may lead to a significant reduction in 

the computation time and memory usage.  

II. FORMULATIONS 

For simplicity, the formulations of SS-PITD method are 

presented for a two dimensional (2-D) case. However, the 3-D 

problems can be handled in the same manner. The Maxwell’s 

curl equations for the TE wave in an isotropic, lossless 

medium can be written in a compact matrix form as 
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In the conventional PITD method [1], the recursive 

solution of (1) marching from the n th time step to the 

 1n th time step can be written as 

   ntn e UU
BA  1                               (3) 

where t  is the time step size, n  is the time index. The 

matrix exponential of (3) can be approximated by 
  ttt eee   BABA                                (4) 

Thus, by using the split step scheme, the PITD time step t  

is divided into two sub-steps with the time increments of 

2/t , and the numerical solution of (1) can be obtained by 

successively solving 
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Similar to the conventional PITD method, the 

computation region is discretized by the Yee’s grid, and the 

spatial derivatives is approximated by the central difference 

scheme. Then, (5) is reduced to two systems of ordinary 

differential equations (ODEs) 
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and 
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where x  and y are the space step sizes along x- and y-

directions, respectively. It can be seen that only two field 

components relating to the spatial difference along one 

direction are needed to be updated in each sub-step. Thus, the 
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Fig.1 Maximum phase velocity error versus CFLN with / =100 

TABLE I  

 COMPUTATIONAL RESULTS 

Method CFLN Result(GHz) Error Memory(MB) 

FDTD 0.5 16.16 0.40% 0.03 

PITD 2 16.14 0.56% 107.9 

ADI-FDTD 2 15.73 3.04% 0.05 

SS-PITD 2 15.99 1.44% 0.17 
 

original 2-D problem is reduced to a number of 1-D problems, 

and then they are solved by the precise integration technique. 

III. NUMERICAL RESULTS 

To demonstrate the superiority of the SS-PITD method, 

the numerical dispersion characteristics of the proposed 

method are investigated. For clarify, a uniform mesh 

(  yx ) are employed, we define CFLN as the ratio of 

the time step to the CFL limit. Fig. 1 shows the maximum 

numerical phase velocity errors versus CFLN for the ADI-

FDTD, the conventional PITD and the SS-PITD method with 

/ =100. Due to the error caused by splitting the matrix 

exponential, the maximum phase velocity errors of the SS-

PITD method increase as CFLN increases, but they can be 

much smaller than those of the ADI-FDTD method. 

Fig.2 shows a common model in the electromagnetic 

compatibility (EMC) issues. The upper portion is a three-

dimensional diagram of the enclosure, and the lower portion 

is a front view of the thin metal plate that is set in the middle 

of the enclosure to divide it into two equal parts. The 

enclosure is assumed to be a cuboid box with the size of 

2.3cm 20cm 32cm. Three narrow slots of 10cm length and 

0.1cm width are cut on the thin metal plate. A current source 

along x-direction with a Gaussian-pulse temporal variation is 

placed at the center of the lower part of the enclosure. The 

observation point is set at the central point of upper part of 

the enclosure. To resolve the fine-scale geometric detail of the 

narrow slots in the x-direction, we choose the spatial grid 

sizes x =0.02cm and y = z =1cm. Thus, the total mesh 

dimensions are 115  20  32 cells in the x- , y- and z-

directions, respectively. For this problem, the conventional 

PITD method requires over 780 GB of memory, which cannot 

be afforded on personal computers. However, the SS-PITD 

method only takes up about 2.2MB of memory. Fig.3 shows 

the waveforms of xE  in time domain simulated by the SS-

PITD method and the conventional FDTD method, 

respectively, with CFLN=0.5 for the FDTD and CFLN=6 for  
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Fig.2 Enclosure with a thin metal plate 

 

Fig.3 Waveforms of xE  excited by Gaussian pulse 

the SS-PITD. It can be seen that the results are in quite good 

agreement. 

To show that the proposed method takes up less memory 

than conventional PITD and achieves less dispersion error 

than the ADI-FDTD method, the resonant frequency of a 

simple 3-D air-filled cavity discretized by 8 8 8 uniform 

grid cells of size 2 cm is calculated. It can be seen from Table 

I that, although the SS-PITD method is not in the same 

accuracy with the PITD method, it can be more memory 

efficient than the PITD method and more accurate than the 

ADI-FDTD method. 

REFERENCES 

[1] X. K. Ma, X. T. Zhao, and Y. Z. Zhao, “A 3-D precise integration time-

domain method without the restraints of the Courant-Friedrich-Levy 

stability condition for the numerical solution of Maxwell’s equations,” 

IEEE Trans. Microw. Theory Tech., vol. 54, no. 7, pp. 3026-3037, 2006. 

[2] L. Jiang, Z. Chen, J. Mao, “On the numerical stability of the precise 

integration time-domain (PITD) method,” IEEE Microw. Wireless 

Compon. Lett., vol. 17, no. 7, pp. 471-473, 2007. 

[3] F. Zheng, Z. Chen, and J. Zhang, “A finite-difference time-domain method 

without the courant stability conditions,” IEEE Microw. Guided Wave 

Lett., vol. 9, no. 11, pp. 441-443, 1999. 

[4] N. V. Kantartzis, T. T. Zygiridis, and T. D. Tsiboukis, “An 

unconditionally stable higher order ADI-FDTD technique for the 

dispersionless analysis of generalized 3-D EMC structures,” IEEE Trans. 

on Magn., vol.40, no.2, pp. 1436-1439, 2004. 

[5] J. Shibayama, M. Muraki, J. Yamauchi, and H. Nakano, “Efficient 

implicit FDTD algorithm based on locally one-dimensional scheme,”  

Electron. Lett., vol. 41, no. 19, pp. 1046-1047, 2005. 

[6] M. M. Rana and A. S. Mohan, “Segmented-Locally-One-Dimensional-

FDTD method for EM propagation inside large complex tunnel 

environments,” IEEE Trans. on Magn., vol.48, no.2, pp. 223-226, 2012. 

[7] J. Lee and B. Fornberg, “A split step approach for the 3-D Maxwell’s 

equations,” J. Comput. Appl. Math., vol. 158, pp. 485-505, 2003.
 


