
Abstract— Here it will be present a new approach on
programming the finite element method that turns programs
faster, simpler and more effective in languages like MATLAB or
SCILAB, for example, when compared to the traditional way to
program and that uses built-in function. Through this new
approach, Laplace's Equation in a 2D domain has been solved
getting a better performance up to 2.5 for a linear mesh with
triangles and more than 1,000,000 nodes. Finally, some remarks
will also be done about other possible uses of the technique.

Index Terms—Finite element methods; Laplace equation;
MATLAB.

I. INTRODUCTION

During the last twenty years, MATLAB has been widely
used as a potential tool for scientific programming, especially
for solving of differential equation either in the industry or in
the classroom [1]-[6]. Once it is an interpreted language,
MATLAB is usually slower than compiled languages like C or
FORTRAN although it won't be true for all kind of
application. On reality, Matlab can be well adapted to
numerical computation since the underlying algorithms for
built-in functions and supplied m-files are based on the
standard libraries LINPACK and EISPACK, usually compiled
in C.

Here, it will be reported an effective, simple, vectorized
and easily adaptive way to program the finite element method
(FEM) in MATLAB using built-in functions only (except for
one) with no loops. In fact, spent times of simulation
comparing a code with loop and the one proposed will be
shown. The case of study was Laplace's equation in a 2D
domain with nodal formulation. Although not described here
due to page limitations, a simple approach to generate the
element matrices applied into the proposed code is also
discussed and it will be explained on the next section.

II. NODAL FORMULATION FOR 2D DOMAIN

As it is well-known, the FEM formulation with triangular
elements can be described in four simple steps:

1. in the local coordinates (, ), the shape functions {Ni}
are written as


































3

2

1

3

2

1

L

L

L

N

N

N
or



































































13

32

21

33

22

11

6

5

4

3

2

1

4

4

4

)5.02.(

)5.02.(

)5.02.(

LL

LL

LL

LL

LL

LL

N

N

N

N

N

N

 (1)

with   321 ,,1 LLL .

 2. The coordinates x, y become:

332211

332211

...

...

LyLyLyy

LxLxLxx


 (2)

where xi and yi are coordinates into node i for a given element.
 3. An integration in global coordinates can be transformed
in local coordinates as:

 


  ddJfdxdyyxf
e

),(),(),((3)

where),(J is the determinant of Jacobian matrix [J], given

by

  
e

yx

yx
J 















//

// . (4)

 4. Finally, the last step concerns differential operations, it
means:

   



















 




/}{

/}{

{/{

/}{ 1

N

N
J

yN

xN . (5)

 The idea to program these four steps is to easily and
automatically produce the element matrices to be introduced
into the main program discussed in next section. In fact, the
relations expressed by Eqs (1) to (5) already contemplate the
linear or quadratic elements and they can be easily modified to
3D domain.

III. CONCEPT OF THE VECTORIZED CODE

 At first, it is assumed that mesh data have already been
loaded. For the Laplace's problem those data are saved on
three variables: nodes, topol and bound. nodes is a matrix
containing coordinates of all points of discretization and its
dimension will be nn x 2. The variable topol contains mesh’s
topology and it is a matrix ne x ie (ie=3,6 for linear or
quadratic elements, respectively). Finally, bound has
dimension nb x 2 where the first and the second columns
corresponds to number of the node and the value associated to
it, respectively. It will be used to assign tension's value in the
already known nodes. Following, one has the possible code for
implementation, explained line by line.
 As someone knows, MATLAB has to find and to assign a
contiguous piece of free RAM memory for a given variable.
For this reason, the following coordinates xi and yi have not
used into the same variable but for different ones. Actually,
they demand the same RAM memory size but in the process of
allocation it is faster writing in this way because different
variables are smaller if compared to a single one. Thus, until

A new and simple technique for vectorization of
Finite Element Method in electromagnetics

C. H. Veloso 1, A. M. F. Frasson 2 and K. Z. Nobrega *

1,*
DEE-Instituto Federal do Maranhão/ 2 DEE-Universidade Federal do Espírito Santo

1,* Av. Getúlio Vargas 4, Monte Castelo 65030-005 (São Luis-Ma, Brazil), 2 Av. Fernando Ferrari 514,
Goiabeiras 29075-910 (Vitória-Es, Brazil)

1
henri_5_veloso@hotmail.com; 2 antonio@denise.ele.ufes.br; * bzuza@ifma.edu.br

the line of Ae one will have the area of all elements that is
based on xi and yi only.
ie=size(topol,2);
x1=nodes(topol(:,1),1);
x2=nodes(topol(:,2),1);
x3=nodes(topol(:,3),1);
y1=nodes(topol(:,1),2);
y2=nodes(topol(:,2),2);
y3=nodes(topol(:,3),2);
Ae=(x2-x1).*(y3-y1)-(x3-x1).*(y2-y1);

 Next, the line code has intention to create two vectors col
and lin associated to a matrix ie x ie. The idea is to create two
vectors containing the position of a matrix ie x ie and use the
indices to pipe all local nodes from topol. For example, the
following line code produces lin =[1 1 1 2 2 2 3 3 3] and col
=[1 2 3 1 2 3 1 2 3] where lin makes the rule of changing the
weight function in the FEM while col the tension (unknowns).
It must be emphasized that ind2sub or any equivalence is the
only non built-in function along this whole code, it means, the
only command line slower if compared to C or FORTRAN but
its idea is too simple and truly fast even for 3D domain.

[col lin]=ind2sub([ie,ie],1:ie^2);

After that, all those combinations (for all elements at the
same time) will be stored into variable biunivoc which keeps
the position where the element matrices (here assembled for all
elements) must be pre-allocated into the global matrix.

BIUNIVOC= zeros(nel*ie^2,2);
BIUNIVOC=[reshape(topol(:,lin),nel*ie^2,1) reshape(to
pol(:,col),nel*ie^2,1)];

 Then, taking the expression for the element matrix
generated by any routine following steps of section 2, one
assign biunivoc as the pseudo global matrix to finally
assemble the global matriz, A, through the sparse function.

A_aux=[
 - (x2 - x3).^2./(4.*Ae) - (y2 - y3).^2./(4.*Ae);
 ((x1 - x3).*(x2 - x3))./(4.*Ae) + ((y1 - y3).*(y2 -
y3))./(4.*Ae);
 - ((x1 - x2).*(x2 - x3))./(4.*Ae) - ((y1 - y2).*(y2 -
y3))./(4.*Ae);
 ((x1 - x3).*(x2 - x3))./(4.*Ae) + ((y1 - y3).*(y2 -
y3))./(4.*Ae);
 - (x1 - x3).^2./(4.*Ae) - (y1 - y3).^2./(4.*Ae);
 ((x1 - x2).*(x1 - x3))./(4.*Ae) + ((y1 - y2).*(y1 -
y3))./(4.*Ae);
 - ((x1 - x2).*(x2 - x3))./(4.*Ae) - ((y1 - y2).*(y2 -
y3))./(4.*Ae);
 ((x1 - x2).*(x1 - x3))./(4.*Ae) + ((y1 - y2).*(y1 -
y3))./(4.*Ae);
 - (x1 - x2).^2./(4.*Ae) - (y1 - y2).^2./(4.*Ae);
];
A = sparse(BIUNIVOC(:,1),BIUNIVOC(:,2),A_aux);

 Finally, the last command lines are self-explained.

V=zeros(nn,1); % Create with 0 to pre-allocate memory
V_known=V; % Vector of the known values
V_known(bound(:,1),1)=bound(:,2); % apply the values
b= -A*V_known; % create the vector b

A(bound(:,1),:)=[]; % remove the already known position from
A(:,bound(:,1))=[]; % matrix A and
b(bound(:,1))=[]; % b

Venx= A\b; %Solve the system and to find the unknowns

IV. RESULTS

 To illustrate potential use of this approach, it was
developed a traditional FEM program under the same
circumstances as well as the vectorized code to compare then.

Also, it must be pointed that subroutines were running using an
Intel i7 with only 8GB of RAM's memory with no parallel
code. Table 1 illustrates the results.

TABLE I
Time to solve Laplace's Equation for linear elements.

Nº of nodes t (s) without loop t (s) with loop nolooploop tt
221 0.020 0.033 1.663
455 0.031 0.059 1.936
495 0.035 0.090 2.525
704 0.045 0.250 5.566

1,193 0.084 0.122 1.460
2,398 0.087 0.200 2.307
3,215 0.102 0.272 2.654
3,994 0.151 0.324 2.141
9,586 0.265 0.730 2.753
9,677 0.263 0.738 2.806

16,655 0.480 1.263 2.633
22,005 0.566 1.665 2.943
49,292 1.360 3.817 2.807
99,508 2.917 7.695 2.638

201,601 5.985 15.885 2.654
419,093 13.750 33.337 2.425
876,682 28.531 71.364 2.501
971,448 32.885 83.829 2.549

1,081,843 36.860 99.554 2.701
1,210,588 41.175 107.161 2.603
1,554,142 55.865 143.670 2.572
1,788,404 65.283 163.417 2.503

 According to Table 1, one can see how the vectorized code
is more efficient than the conventional one for a factor about
2.5 even for a number of nodes above 1M. Also, one should
remember that only built-in function have been used, which
turns the code with a processing similar to language C.
Although not shown, similar results are also obtained with
quadratic elements.
 Above all, notice that for quadratic elements the only line
code that changes is the element matrix A_aux, turning this
approach very simple. Besides, for the best of our knowledge
all vectorized codes still have a loop, which is completely
absent in this one. As a last remark, this idea can be easily
extended for other kinds of problems like mode analysis or
beam propagation no matter dimension of the mesh and even
considering conditions like PML, for example.
 Finally, authors would like to thank you both FAPEMA and
IFMA for the financial support of this research project.

REFERENCES

[1] J. Alberty, C. Carstensen, S. A. Funken, R. Klose, “MATLAB
implementation of the finite element method in elasticity,” Computing,
vol.69, pp. 236-263, 2002.

[2] M. S. Gockenbach, Understanding and implementing the Finite
Element Method, SIAM, 2006.

[3] J. Koko, “Vectorized MATLAB codes for linear two-dimensional
elasticity,” Sci. Program, vol.15, no. 3, pp. 157-172.

[4] I. M. Smith, D. V. Griffiths, Programming the Finite Element Method,
4th ed., John Wiley & Sons, 2004.

[5] J. Alberty, C. Carstensen, S. A. Funken, R. Klose, “MATLAB
implementation of the finite element method in elasticity,” Computing,
vol.69, pp. 236-263, 2002.

[6] Talal Rahman, Jan Valdman, “Fast MATLAB assembly of FEM
matrices in 2D and 3D: Nodal elements,” Applied Mathematics and
Computation, to be published.

