
Abstract— Here it will be present a new approach on
programming the finite element method that turns programs 
faster, simpler and more effective in languages like MATLAB or 
SCILAB, for example, when compared to the traditional way to 
program and that uses built-in function. Through this new 
approach, Laplace's Equation in a 2D domain has been solved 
getting a better performance up to 2.5 for a linear mesh with 
triangles and more than 1,000,000 nodes. Finally, some remarks 
will also be done about other possible uses of the technique.

Index Terms—Finite element methods; Laplace equation;
MATLAB.

I. INTRODUCTION

During the last twenty years, MATLAB has been widely 
used as a potential tool for scientific programming, especially 
for solving of differential equation either in the industry or in 
the classroom [1]-[6]. Once it is an interpreted language, 
MATLAB is usually slower than compiled languages like C or 
FORTRAN although it won't be true for all kind of 
application. On reality, Matlab can be well adapted to 
numerical computation since the underlying algorithms for 
built-in functions and supplied m-files are based on the 
standard libraries LINPACK and EISPACK, usually compiled 
in C.

Here, it will be reported an effective, simple, vectorized 
and easily adaptive way to program the finite element method
(FEM) in MATLAB using built-in functions only (except for 
one) with no loops. In fact, spent times of simulation 
comparing a code with loop and the one proposed will be 
shown. The case of study was Laplace's equation in a 2D 
domain with nodal formulation. Although not described here 
due to page limitations, a simple approach to generate the 
element matrices applied into the proposed code is also 
discussed and it will be explained on the next section.

II. NODAL FORMULATION FOR 2D DOMAIN

As it is well-known, the FEM formulation with triangular 
elements can be described in four simple steps:

1. in the local coordinates (, ), the shape functions {Ni} 
are written as
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with   321 ,,1 LLL . 

      2. The coordinates x, y become:
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where xi and yi are coordinates into node i for a given element. 
      3. An integration in global coordinates can be transformed 
in local coordinates as:
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where ),( J is the determinant of Jacobian matrix [J], given 

by
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      4. Finally, the last step concerns differential operations, it 
means:
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     The idea to program these four steps is to easily and 
automatically produce the element matrices to be introduced 
into the main program discussed in next section. In fact, the 
relations expressed by Eqs (1) to (5) already contemplate the 
linear or quadratic elements and they can be easily modified to 
3D domain.

III. CONCEPT OF THE VECTORIZED CODE

     At first, it is assumed that mesh data have already been 
loaded. For the Laplace's problem those data are saved on 
three variables: nodes, topol and bound. nodes is a matrix 
containing coordinates of all points of discretization and its 
dimension will be nn x 2. The variable topol contains mesh’s 
topology and it is a matrix ne x ie (ie=3,6 for linear or
quadratic elements, respectively). Finally, bound has 
dimension nb x 2 where the first and the second columns 
corresponds to number of the node and the value associated to 
it, respectively. It will be used to assign tension's value in the 
already known nodes. Following, one has the possible code for 
implementation, explained line by line. 
     As someone knows, MATLAB has to find and to assign a 
contiguous piece of free RAM memory for a given variable. 
For this reason, the following coordinates xi and yi have not 
used into the same variable but for different ones. Actually,
they demand the same RAM memory size but in the process of 
allocation it is faster writing in this way because different
variables are smaller if compared to a single one. Thus, until 
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the line of Ae one will have the area of all elements that is 
based on  xi and yi only.
ie=size(topol,2);
x1=nodes(topol(:,1),1);
x2=nodes(topol(:,2),1);
x3=nodes(topol(:,3),1);
y1=nodes(topol(:,1),2);
y2=nodes(topol(:,2),2);
y3=nodes(topol(:,3),2);
Ae=(x2-x1).*(y3-y1)-(x3-x1).*(y2-y1);   

     Next, the line code has intention to create two vectors col
and lin associated to a matrix ie x ie. The idea is to create two 
vectors containing the position of a matrix ie x ie and use the 
indices to pipe all local nodes from topol. For example, the 
following line code produces lin =[1 1 1 2 2 2 3 3 3] and col 
=[1 2 3 1 2 3 1 2 3] where lin makes the rule of changing the 
weight function in the FEM while col the tension (unknowns). 
It must be emphasized that ind2sub or any equivalence is the 
only non built-in function along this whole code, it means, the 
only command line slower if compared to C or FORTRAN but 
its idea is too simple and truly fast even for 3D domain.

[col lin]=ind2sub([ie,ie],1:ie^2);

After that, all those combinations (for all elements at the 
same time) will be stored into variable biunivoc which keeps 
the position where the element matrices (here assembled for all 
elements) must be pre-allocated into the global matrix.

BIUNIVOC= zeros(nel*ie^2,2);
BIUNIVOC=[reshape(topol(:,lin),nel*ie^2,1) reshape(to
pol(:,col),nel*ie^2,1)];

     Then, taking the expression for the element matrix 
generated by any routine following steps of section 2, one 
assign biunivoc  as the pseudo global matrix to finally 
assemble the global matriz, A, through the sparse function.

A_aux=[
    - (x2 - x3).^2./(4.*Ae) - (y2 - y3).^2./(4.*Ae);
    ((x1 - x3).*(x2 - x3))./(4.*Ae) + ((y1 - y3).*(y2 -
y3))./(4.*Ae);
    - ((x1 - x2).*(x2 - x3))./(4.*Ae) - ((y1 - y2).*(y2 -
y3))./(4.*Ae);
    ((x1 - x3).*(x2 - x3))./(4.*Ae) + ((y1 - y3).*(y2 -
y3))./(4.*Ae);
    - (x1 - x3).^2./(4.*Ae) - (y1 - y3).^2./(4.*Ae);
    ((x1 - x2).*(x1 - x3))./(4.*Ae) + ((y1 - y2).*(y1 -
y3))./(4.*Ae);
    - ((x1 - x2).*(x2 - x3))./(4.*Ae) - ((y1 - y2).*(y2 -
y3))./(4.*Ae);
    ((x1 - x2).*(x1 - x3))./(4.*Ae) + ((y1 - y2).*(y1 -
y3))./(4.*Ae);
    - (x1 - x2).^2./(4.*Ae) - (y1 - y2).^2./(4.*Ae);
    ];
A = sparse(BIUNIVOC(:,1),BIUNIVOC(:,2),A_aux);

     Finally, the last command lines are self-explained.

V=zeros(nn,1); % Create with 0 to pre-allocate memory
V_known=V;    % Vector of the known values
V_known(bound(:,1),1)=bound(:,2); % apply the values
b= -A*V_known;                    % create the vector b

A(bound(:,1),:)=[]; % remove the already known position from
A(:,bound(:,1))=[]; % matrix A and
b(bound(:,1))=[];   % b

Venx= A\b; %Solve the system and to find the unknowns

IV. RESULTS

     To illustrate potential use of this approach, it was 
developed a traditional FEM program under the same 
circumstances as well as the vectorized code to compare then. 

Also, it must be pointed that subroutines were running using an 
Intel i7 with only 8GB of RAM's memory with no parallel 
code. Table 1 illustrates the results.

TABLE I
Time to solve Laplace's Equation for linear elements.

Nº of nodes t (s) without loop t (s) with loop nolooploop tt
221 0.020 0.033 1.663
455 0.031 0.059 1.936
495 0.035 0.090 2.525
704 0.045 0.250 5.566

1,193 0.084 0.122 1.460
2,398 0.087 0.200 2.307
3,215 0.102 0.272 2.654
3,994 0.151 0.324 2.141
9,586 0.265 0.730 2.753
9,677 0.263 0.738 2.806

16,655 0.480 1.263 2.633
22,005 0.566 1.665 2.943
49,292 1.360 3.817 2.807
99,508 2.917 7.695 2.638

201,601 5.985 15.885 2.654
419,093 13.750 33.337 2.425
876,682 28.531 71.364 2.501
971,448 32.885 83.829 2.549

1,081,843 36.860 99.554 2.701
1,210,588 41.175 107.161 2.603
1,554,142 55.865 143.670 2.572
1,788,404 65.283 163.417 2.503

     According to Table 1, one can see how the vectorized code 
is more efficient than the conventional one for a factor about
2.5 even for a number of nodes above 1M. Also, one should 
remember that only built-in function have been used, which 
turns the code with a processing similar to language C. 
Although not shown, similar results are also obtained with 
quadratic elements. 
     Above all, notice that for quadratic elements the only line 
code that changes is the element matrix A_aux, turning this 
approach very simple. Besides, for the best of our knowledge 
all vectorized codes still have a loop, which is completely 
absent in this one. As a last remark, this idea can be easily 
extended for other kinds of problems like mode analysis or 
beam propagation no matter dimension of the mesh and even 
considering conditions like PML, for example.  
     Finally, authors would like to thank you both FAPEMA and
IFMA for the financial support of this research project.
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