
Abstract—With HVDC system developing rapidly in China, the 

ion flow problems of the HVDC lines are concerned widely and 

some of which are 3D problem. A new 3D method together with 

Galerkin finite element method and Newton method is proposed 

in this paper. With subdivision of second-order tetrahedral 

elements, the numerical results and the analytic solution agree 

with each other very well and the new solution scheme proposed 

shows good convergence rate.  

Index Terms—Corona, HVDC transmission, Finite element 

methods, Newton method. 

I. INTRODUCTION 

High voltage direct current (HVDC) transmission system 

has many advantages over HVAC transmission system for 

long-distance and large bulk power transmission [1]. So it has 

been developed rapidly in China. Two ±800kV ultra-high 

voltage direct current (UHVDC) transmission systems have 

been put into operation in China in 2010. Many UHVDC lines 

will be put into operation in the future.  

HVDC transmission lines inevitably produce corona 

phenomenon and then the produced orientation moving space 

charge will significantly enhance electrostatic field produced 

by wire charge [1]. The electric field produced by space 

charge and wire charge is called ionized electric field. The 

ionized electric field under HVDC lines is an important 

problem of electromagnetic environment. 

In China, the corridor of the HVDC lines is very complex 

that the HVDC lines may pass by rivers, buildings, forest. 

Then many of the ion flow field problems are considered as 

3D problems. Many methods have been proposed to analyze 

the ion flow field of the HVDC transmission lines, but most of 

them focus on the 2D problems [2-6]. Based on Deutsch’s 

assumption, that the ions in the space only change the intensity 

not the direction of the electric field, a 3D method for 

evaluating the ion flow field on the building is proposed [6]. 

But in the 2D ion flow field calculation, it’s indicated that the 

Deutsch’s assumption is not strictly true and may introduce 

some error [3].  

The method coupled with Galerkin finite-element method 

and Newton iterative method has good convergence rate [7]. 

The method is easy to adopt high-order elements to obtain 

good precision. To solve 3D problem, the good convergence 

rate and high precision are extremely important. Though the 

method is only used to solve the 2D ion flow problem in [7], 

there is potentially probability for the method to be extended 

to solve 3D problem. 

In this paper, the partial differential equations for ion flow 

field are discretized as nonlinear algebraic equations by using 

Galerkin finite-element method. To solve the nonlinear 

algebraic equations, Newton method in a new solution scheme 

is proposed. The new solution scheme shows good accuracy 

and convergence rate.  

II. METHODS 

This paper focuses on the uniploar problem. For unipolar 

ion flow field under HVDC lines, the governing equations of 

the ion flow field are as follows [2]: 
2

0/     ,                                 (1) 

 E ,                                    (2) 

0 j ,                                      (3) 

Kj E ,                                     (4) 

where  is potential, E is electric field,  is charge density, 0  

is permittivity of vacuum, j is ion current density and K is ion 

mobility. 

Set 0/p   then (1)-(4) yield 

2 p   ,                                 (5) 

2 0p p    .                            (6)   

The coupled partial differential system of (5) and (6) is 

nonlinear. To solve the problem, Galerkin finite-element 

method is adopted to discretize the differential system into an 

algebraic system. Tetrahedral element is adopted to divide 

the calculation domain. In order to accurately treat the 

curved surface, ten-node curved-side tetrahedral element is 

chosen [8]. 
The 3D solution scheme developed from [7] is noted by S1 

and the solution scheme as follows is noted by S2. 

Starting from an initial guess p(0), the basic iterative 

solution scheme is shown as follows: 

i. (m) is obtained by using FEM from (5) with considering 

that p(m) is known.  

ii. p(m+1) is obtained by using Galerkin FEM and a Newton 

iterative step from (6) with considering p(m) and (m) are 

known.  

Now let’s compare the two schemes through a numerical 

example of the ion flow in a homocentric sphere domain. 

The radius of the inner sphere is 0.01 m and the radius of 

the outer sphere is 0.1 m. The potential of the inner surface is 

50 kV and that of the outer surface is zero. For this structure, 

there is analytic solution of the ion flow field.  

The numerical results by using S1, that by using S2 and the 

analytic result of the ion flow field are shown in Fig. 1. In Fig. 

1(a) and Fig. 1(b), r is the distance from the centre of the 

sphere; In Fig. 1(a),  is charge density in the space; In Fig. 
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1(b), E is the electric field intensity. As shown in Fig. 1(a), the 

three values all coincide very well; in Fig. 1(b), the three 

values all coincide very well too. The two solution schemes S1, 

S2 are verified correct. 

In Fig. 1, the difference of the values between S1 and S2 

could not be found. In order to compare the values of the two 

methods carefully, the difference values are calculated. The 

maximal difference value of the charge density is about 

1.010
-14

 C/m
3
 and that of the electric field intensity is about 

1.810
-5

 V/m. So the numerical results of the two schemes 

could be considered as the same value. 

Now let’s investigate the convergence rate of the two 

methods. The modulus values of the iterative correction 

amount by using the schemes S1, S2 are defined individually 

by Cm, Dm, where the subscript m indicates the m-th iteration. 

Cm, Dm are shown as follows: 
1/2

( ) ( ) ( )C δ (δ δ )m m m m  u u u                        (7) 

1/2

( ) ( ) ( )D δ (δ δ )m m m m  p p p                        (8) 

Cm, Dm varying with the number of the iterations m are 

shown in Fig. 2, where the vertical coordinate log() indicates 

log(Cn/C1) or log(Dn/D1) for S1 or S2, and the horizontal 

ordinate is the number of the iterations. From Fig. 2, it could 

be found that the two methods have the similar convergence 

rate. 
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Fig. 1 Comparison between numerical and analytic solutions of the ion flow 

field of the concentric sphere 

The calculation precision and the convergence rate of the 

two schemes are similar. Next, let’s analyze the calculation 

amount of the two schemes. 

The number of the nodes is noted by n, then the order of J, 

the coefficient matrix for S1, is 2n. In the calculation, the 

storage of a 2n2n matrix is the major memory need for S1. 

While J
p
, the order of the coefficient matrix for S2, is n. So the 

major storage for S2 is two nn matrixes. So the memory need 

of S2 is about 50% of S1. 
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Fig. 2 Comparison of the convergence rate of the two schemes 

In the calculation procedure, the solution of the 

nonsymmetric matrix equation is the major calculation amount. 

For large-scale matrix equation, the iterative algorithm is 

usually preferred to the direct algorithm. The condition 

number is an important target of the computation cost for 

iterative algorithm. The smaller the condition number is, the 

less the solution computation cost is. J and J
p
 are both 

nonsymmetric matrix. The condition number of J is 9.710
6
, 

while the condition number of J
p
 is 1.310

5
. 

 As above analysis, in memory need and solution cost, S2 is 

better than S1.  

ACKNOWLEDGMENT 

This project is supported by Nature Science Foundation of 

Hebei Province in China (E2011502075). 

REFERENCES 

[1]  M. P. Sarma, Corona performance of high-voltage transmission lines, 

Research studies Press LTD.: Baldock. Hertfordshire, England, 2000, pp. 

179-213, 273-283.  
 [2]  Sarma M. P., W J. "Analysis of Corona Losses on DC Transmission 

Lines: I - Unipolar Lines". Power Apparatus and Systems, IEEE 

Transactions on , vol. PAS-88, no. 5, pp. 718-731, 1969  

 [3]   Takuma T，Ikeda T，kawamoto T．”Calculation of ion flow fields of 

HVDC transmission lines by the finite element method” ． IEEE 

Transactions on Power Apparatus and Systems, vol.100, no.12, pp. 

4802-4810, 1981 
 [4]   Z.M. Al-Hamouz, “Corona power loss, electric field, and current density 

profiles in bundled horizontal and vertical bipolar conductors,” IEEE 

Trans. on Industry Applications, vol. 38, no. 5, pp. 1182-1189, 2002. 

 [5]  Tiebing L., Han F., Xiang C., et al. "Analysis of the Ionized Field Under 

HVDC Transmission Lines in the Presence of Wind Based on Upstream 

Finite Element Method". Magnetics, IEEE Transactions on, vol. 46, no. 

8, pp. 2939-2942, 2010. 
 [6]  Zhaonan Luo, Xiang Cui, Weidong Zhang, Jiayu Lu. "Calculation of the 

3-D Ionized Field Under HVDC Transmission Lines". IEEE 

Transactions on Magnetics, vol. 47, no.5, pp.1406-1409, 2011. 
[7]  James Q F. “Application of Galerkin Finite-Element Method with 

Newton Iterations in Computing Steady-State Solutions of Unipolar 

Charge Currents in Corona Devices,” Journal of Computational 

Physics, Vol. 151, No, 2, pp. 969-989, 1999 
[8]    Jianming J. The finite element method in electromagnetics. 2nd ed. New 

York:Wiley, 2002. pp. 165-206. 




