
Lazy cohomology generators: a breakthrough in
(co)homology computations for CEM

Paweł Dłotko♭, Ruben Specogna♯
♭Jagiellonian University, Institute of Computer Science, Lojasiewicza 6, 30348 Kraków, Poland
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Abstract—Computing the first cohomology group received
great attention in computational electromagnetics as a theoret-
ically sound and safe method to produce cuts required when
eddy-current problems are solved with magnetic scalar potential
formulations. In this paper we introduce the novel concept of
lazy cohomology generators, that are cocycles which span the
first cohomology group but are not a basis. After showing that
they fit nicely in ungauged h-oriented eddy-current formulations,
we dwell upon a fast algorithm to compute them. This graph-
theoretic algorithm is much faster than all competing ones being
the typical computational time in the order of seconds even with
meshes formed by millions of elements. We are persuaded that
this is the definitive solution to this long-standing problem.

Index Terms—magneto-quasistatics, magnetic scalar potential,
thick cuts, (co)homlogy, first cohomology group lazy generators.

I. Introduction

Besides many attempts to circumvent it, (co)homology is
recognized to be the only safe tool to define potentials in the
nontrivial cases [1], [2]. In this paper we focus on eddy-current
problems, even though the novel idea of lazy cohomology gen-
erators is much broader in scope. When solving eddy-current
problems involving topologically non-trivial conductors with
an efficient h-oriented formulation, to render the problem well
defined, the first cohomology group generators have to be
computed [1], [2]. Being impossible in practice to construct
them by hand, it is natural to search for an algorithm to do it
automatically.

For 2d problems, it has been recently shown in [3] that an
optimal graph-theoretic algorithm exists that exhibits linear
complexity and produces optimal cohomology generators. For
3d problems it seems to be much harder. In principle, coho-
mology generators over integers—unlike the real and complex
ones—can be rigorously computed in polynomial time with
the aid of the so-called Smith normal form (SNF) [4] of the
coboundary matrix. However, this approach is not feasible
in practice as its complexity is hyper-cubical using the best
implementation. The exploitation of sparsity together with a
number of reductions of the input complexes [1], [5], [6]
before applying the SNF, allows the practical solution of the
problem even on meshes with millions of elements. What is
not appealing is that this process in most cases takes more than
the time required by the remaining part of the simulation. This
fact does not help to impose (co)homology as the best practice

to defining potentials in computational electromagnetics and
encourages naı̈ve and patently incorrect solutions, as the ones
surveyed in [2]. Moreover, the implementation of topological
procedures is a rather complicated issue that usually confine
this research to few state-of-the-art softwares [5], [6].

The need for a dramatic speed up and the dream of a
completely graph-theoretic algorithm to get rid of the SNF
core, have lead us to an algorithm called Thinned Current
Technique (TCT) [7]. This algorithm is easy to implement
and order of magnitude faster than its competitors being
its complexity linear with the number of elements in the
mesh. Nonetheless, it assumes to deal with conductors that
retract to a graph. If this is not the case in the actual eddy-
current problem, it automatically switches to the algorithm
described in [5]. This prerequisite may be too stringent for
some topologically complicated conductors.

The aim of this paper is to cover this gap by introducing an
extremely fast, general and graph-theoretic algorithm to solve
this problem called the Dłotko–Specogna (DS) algorithm [8].
This algorithm, in its simpler version, does not produce a
standard cohomology basis since the output 1-cocycles may be
linearly dependent or cohomologically trivial. However, since
they are still able to span the first cohomology group, we call
them lazy cohomology generators. It is certainly possible to
produce a cohomology basis with the DS algorithm (see details
in [8]), but this requires additional computational time and
coding efforts. Instead doing so, the very idea of this paper
is to show that lazy cohomology generators may be directly
employed in ungauged eddy-current formulations.

In this paper we present the DS algorithm to produce
lazy generators together with timings that indeed indicate the
superiority of the new algorithm. Later we show how this kind
of generators are used in ungauged eddy-current formulations.
We leave more details and insights on the algorithm together
with a more extensive comparison for the full paper.

II. DS algorithm

Let K be a homologically trivial polyhedral cell complex in
R3 representing the domain under study. Let us consider the
two sub-complexes Kc and Ka that contain elements belonging
to the conducting and insulating regions, respectively.

1) Compute the 1st cohomology H1(C,Z) generators
c1, . . . , c2g, where C is ∂Kc \ ∂K and g denotes the



genus of C. This can be performed in linear time worst-
case complexity O(card(∂Kc) g) with the graph-theoretic
algorithm presented in [9].

2) Find the t1, . . . , t2g corresponding to c1, . . . , c2g in
O(card(∂Kc) g) with the following algorithm:

for each 1-cell E with nonzero coefficient cE in ci

for each 2-cell T ∈ Kc with E in the boundary
⟨ti,T ⟩+ = cEκ(T, E);

The value of the cochain t on a cell E is ⟨t, E⟩, whereas
κ(A, B) denotes the incidence between cells A and B.
Initially, set ⟨ti,T ⟩ = 0 for all 2-cells T ∈ Kc.

3) Solve the integer systems δh j = t j, j ∈ {1, . . . , 2g}, δ
being the coboundary matrix, to find the 2g 1-cocycles
h1, . . . , h2g in Ka. This can be performed without solving
any system by a simultaneous application of the ESTT
algorithm [10], [7]. Simultaneous means that the ESTT
algorithm is applied to all t1, . . . , t2g thinned currents
at the same time. Algorithmically this can be easily
achieved by changing a real number to a vector of 2g
real numbers in the ESTT algorithm.

4) Store the restrictions of h1, . . . ,h2g to Ka. The average
computational effort required is O(card(K) g).

If the genus g is bounded by a constant O(1), as it happens
always in practical problems, the average complexity of the
DS algorithm is linear O(card(K)).

III. Lazy cohomology generators and ungauged formulations

Lazy cohomology generators are employed in a MQS
formulation, for example the T-Ω [2], as if they were a
set of standard H1(Ka,Z) generators. Namely, a nonlocal
Faraday’s equation [2] is written on the support of the j-th
cohomology generator as ⟨Ũ, ∂h̃ j⟩ = −iω ⟨Φ̃, h̃ j⟩, where Ũ
is the electro-motive force 1-cochain on the dual complex,
Φ̃ is the magnetic flux 2-cochain on the dual complex and
h̃ j = D(h j), D being the dual map [4] that maps elements
of the original complex to elements of the dual complex.
Lazy cohomology generators contain a H1(Ka,Z) basis and
generators that are dependent to the basis. Therefore, adding
the dependent equations is not a problem considering that the
system of equations to solve is already overdetermined. This is
due to the fact that algebraic Faraday’s equations [2] enforced
in Kc are also dependent. Even though a full-rank system may
be obtained by a tree-cotree gauging (i.e. set the electric vector
potential on a tree of 1-cells in Kc to zero), it is widely known
that with iterative linear solvers it is much more efficient to
use an ungauged formulation. What is important from the
modeling point of view is that even if the potentials are not
unique, the fields are. Therefore, the use of linearly dependent
cocycles in the physical modeling does not introduce either
any inconsistency in the formulation of the boundary value
problem or any penalties in the computational time employed
by the simulation due, for example, to a hypothetical increase
of the condition number of the linear system matrix or to the
use of twice as many cohomology generators as needed.

As a final observation about lazy generators, let us now
consider a lazy generator belonging to the trivial class of

Table I: Time required (in seconds) for cohomology compu-
tation with various algorithms.

Benchmark tetrahedra H1(Ka,Z) TCT DS
[5] [7] lazy

trefoil knot 199, 208 23 0.6 0.3
spiral 1, 842, 070 (612) 10.1 1.7
micro-inductor 2, 197, 192 (> 70000) 24.5 2.4
micro-transformer 2, 582, 830 (> 70000) 32.8 3.6
micro-coaxial line 4, 861, 655 (6128) 86.1 10.6
toroidal shell 2, 769, 200 (> 70000) (> 70000) 3.4

H1(Ka,Z). Given an arbitrary 1-cycle c ∈ Z1(Ka), the dot
product of the lazy generator with c is zero. Therefore, trivial
generators verify trivially the nonlocal algebraic Ampère’s law
and, in this case, the current i j does not represent the current
linked by the dual homology generator. Therefore, the value
of the independent current relative to a trivial generator is not
unique and it is determined by the solution of the system of
equations. This is not surprising, since the independent current
in this case does not have a physical meaning.

IV. Numerical experiments

Table I shows the comparison in term of computational
timing of the best algorithms available in literature in com-
puting generators for six different eddy-current problems. As
one can see from this results, the DS algorithm outperforms all
its competing algorithms demonstrating its extreme usefulness
in computational electromagnetics.

We are persuaded that lazy generators will be seen as a
major step forward in the state-of-the-art of (co)homology
computations for electromagnetic modeling since they provide
what we consider the definitive solution to the long-standing
open problem of computing cohomology generators for low-
frequency electrodynamics.
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