
Abstract— In a previous work, we introduced a formulation 
joining two concepts: the Source-Field technique and the 
Differential Permeability method [1]. It was shown that the 
resulting procedure produces accurate results for non-linear cases 
and it was favorably compared with the more classical approach 
considering the actual permeability. Here we extend this 
formulation for vector hysteresis cases taking into account the 
magnetic anisotropy of the ferromagnetic sheets, which is the 
main contribution of this paper.  

Index Terms—Magnetic anisotropy, magnetic hysteresis, Finite 
Element Methods. 

I. INTRODUCTION 

Modeling electrical devices possessing ferromagnetic 
sheets under variable magnetic fields may require, in certain 
cases, a high degree of accuracy. If the magnetic circuit does 
not have airgaps (as transformer yokes), hysteresis plays a 
relevant role on the device magnetic behavior. The problem 
becomes more complex if one wishes to consider the electrical 
sheets anisotropy and the electrical circuit coupling.  

In [1] we introduced a formulation based on differential 
permeability coupled to the source-field method for solving 
non-linear problems [2]. We pointed out that such an approach 
would allow solving hysteretic cases, which is now considered 
in this paper. The hysteresis is modeled by the Jiles-Atherton 
approach [3][4][5]. Assembling all these concepts in a 3D FE 
program is the main goal of this paper.  

II.  THE FORMULATION  

With the differential permeability method, we have, for 
isotropic non linear materials  

                                      
d

µ∆ = ∆B H                                 (1) 

where dµ  is the differential permeability, i.e., the tangent of a 

typical B(H) curve of a non-linear material on an operation 
point (B,H). H and B are magnetic field and induction 
respectively. As the time evolutes from t to t+1, the variations 
of H and B are   

                  t+1 t∆ = −B B B      and       t+1 t∆ = −H H H  
With the source-field method [1][2], we have  

                               1 1t+1 t tgrad+ += − Ω
s

H H                        (2)    

where Ω  is the magnetic scalar potential and 
s

H  is the source 

field associated to the imposed current density as rot =
s

H J  

[1][2]. In this work, considering magnetic anisotropy [6], (1) is 
extended to 
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µ∆ = ∆B H                                   (3) 

where the magnetic differential permeability is defined by  
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Considering t+1 t∆ = −B B B  and (2),  (1) becomes 

        1 1( )t+1 t t t t t

d
grad gradµ + += + − + Ω − Ω

s s
B B H H      (4) 

where tB , t

s
H  and tΩ  are known from the previous time step. 

The main equation on this development is  

                                    0t+1div =B                                     (5) 

or, from (4)  

     1 1[ ( )] 0t t t t t

d
div grad gradµ + ++ − + Ω − Ω =

s s
B H H     (6) 

Applying the Galerkin method to (5), we have 

                                  0t+1

V
N div dv=∫ B                            (7) 

where N  is the nodal shape function of a tetrahedron element 
and V is the domain volume. It is 

    
( )

0t+1 t+1 t+1

V s v V
N div dv N d grad N dv= ⋅ − ⋅ =∫ ∫ ∫B B s B�  

The first term on the right hand side is related to the 
classical boundary conditions for scalar potential [1]. The 
second one must be evaluated for the numerical 
implementation, as: 

                             0t+1

V
grad N dv− ⋅ =∫ B  

or, using (4)  
1 1[ ( ) ( )] 0t t t t t

d dV
grad N grad grad dvµ µ+ +− ⋅ + − + Ω − Ω =∫ s s

B H H

 In order to couple the above equation with electrical circuit 
we introduce the vector K  as [1]:  

                             
0

I=
s

H K                                              (8) 

where 
0

I  is the current flowing in a conductor. We also use 

the vector N expressed by: 

                               
0

rot I=
s

H N                                       (9) 

Considering (8) and (9) above, we have: 
                                   rot =K N                                     (10) 

Therefore, K  corresponds to the magnetic field created by a 
unitary current in a coil wire. Now let us consider the electric 
circuit coupled to the magnetic structure.  

                               m

m m m

d
V R i

dt

Φ
= +                              (11) 

where mV , mR , mi  and mΦ  are, respectively, the voltage, the 

resistance, the established current and the magnetic flux 
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linkage in a generic electric circuit m (suppose that there are M 
electric circuits). From [1] it can be shown that the magnetic 
flux is: 

                                1 1

b

t t

V
dv+ +Φ = ⋅∫ B K                         (12) 

where 
b

V  is the volume of a coil element of an electric circuit 

m. For the time step t+1 we have: 

                     1 1 1

b

t t t

m m m V

d
V R i dv

dt

+ + += + ⋅∫ B K                   (13) 

Here we apply the derivative time discretization as: 

                   1 1 1( )
b

t t t t

m m m V
t V t R i dv+ + +∆ = ∆ + − ⋅∫ B B K      (14) 

Applying (4) for 1t +B  we have all the necessary expressions to 
obtain the matrix system coupling (7) and (14). It gives [1]:  
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where G is the grad N  and K is the matrix form of K .  

III.  EXAMPLE  

As example of the formulation, let us we consider the simple 
structure of Fig. 1. This magnetic circuit has two isotropic 

pieces P1 and P2 (
0

1000µ µ= ). The first graphical result is 

shown in Fig. 2. The Ozx projection of same result is presented 
in Fig. 3.  

 
Fig. 1- Magnetic Circuit; part P2 is isotropic 

  
Fig. 2- The whole structure is isotropic  

 
Fig. 3- Ozx Projection; P2 is isotropic  

In the following figures, we consider that part P2 is 
anisotropic. Figure 4 is related to results when the permeability 
tensor of P2 is given as 
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where the 
x z

µ µ> .  In Fig. 5 we have the flux distribution 

when the Oz permeability component is predominant.    

     
Fig. 4- P2 is anisotropic ( )
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IV.  CONCLUSION   

We presented in this paper an extension of a previous work 
[1]. Here the anisotropy is included in the formulation and the 
vector hysteresis phenomenon has been also considered by 
means of a vectorized Jiles-Atherton model. The latter is under 
final investigations for convergence improvements. Final 
results will be shown in the full version of this paper.   
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