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Abstract—We propose a method to extend unidirectional models for stress-dependent magnetic hysteresis and magnetostriction for 

rotational magnetic fields and biaxial stresses. Analogously to the Mayergoyz vector extension for scalar hysteresis models, the input 

magnetic flux-density vector and stress tensor are projected into a finite number of directions in a semicircle, the unidirectional model 

is applied into each direction, and the output magnetic field-strength vector and magnetostriction tensor are formed by summing up 

the scalar contributions from each direction. The model is found to give physically reasonable results with rotational flux-density 

excitation with an externally imposed stress. In addition, a visualization method for second-order tensors is proposed. 

 
Index Terms—Magnetic hysteresis, magnetoelasticity, magnetostriction.  

 

I. INTRODUCTION 

OUPLED magnetomechanical material models are 

needed for accurate prediction of losses, forces and 

vibrations in electromagnetic devices. During the past 25 

years, models for rotational magnetic hysteresis [1]-[2], 

uniaxial magnetomechanical hysteretic behavior [3], and 

biaxial magnetization and magnetostriction in anhysteretic 

cases [4], [5] have been presented. However, coupling the 

rotational magnetic hysteresis to biaxial mechanical loading 

has started to receive more attention only quite recently [6]. 

In brief, a coupled rotational magnetoelastic hysteresis 

model should be able to produce the field-strength vector and 

magnetostriction tensor under arbitrary rotating flux-density 

excitation and an externally imposed stress tensor. In this 

paper, we propose a method to generalize unidirectional 

magnetoleastic models to be used with 2-D fields. The 

generalization is performed analogously to the Mayergoyz 

vector extension for rotational hysteresis [1]. We project the 

input flux density and external stress tensor into different 

directions in a semicircle, apply the unidirectional model of 

[3] to these projections and sum up the contributions from 

each direction. When compared to measurements, the model is 

found to produce physically reasonable results. 

II. METHODS 

A. Visualization of Tensors 

First, in order to visualize the results obtained with the 

model, we propose a method for graphical presentation of 

second-order tensors in 2-D. To visualize tensor T, it is first 

used to map a finite set of unit vectors ui pointing in 

directions φi into a new set of vectors vi = Tui. Vectors vi can 

then be plotted starting from the unit circle at angles φi. Fig. 1 

shows four examples of tensors visualized by this method. 

The ratio and signs of the diagonal terms, the principal 

directions and the rotational nature of the tensors can be seen 

from the plots. Unlike the Mohr’s circle or the approach of 

[7], this method can also visualize asymmetric tensors. 

B. Unidirectional Model 

In this paper, the unidirectional magnetomechanical 

hysteretic behavior is modeled with the scalar Sablik-Jiles-

Atheron (SJA) model [3]. In brief, the model is able to 

produce the magnetic field strength h and magnetostriction λ 

as a function of the flux density b and an external stress σ 

imposed parallel to the flux density. The governing equations 

of the model are similar to the traditional Jiles-Atherton 

model, except that the effective field has an additional term hσ 

which depends on the stress and the derivative of the 

magnetostriction with respect to the magnetization m: 
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Instead of using the magnetostriction model proposed in [3] 

we choose here a simpler experimental model and express the 

magnetostriction as 
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in which the six parameters ai, i = 1,…,6 are fitted by 

comparison to measurements with an Epstein frame. The 
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Fig. 1 Visualization examples of certain second-order 2×2 tensors. 
Manuscript received December 31, 2012. Corresponding author: P. 
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hyperbolic tangent function ensures saturation of the peak 

magnetostriction with respect to the stress and provides a 

sufficient fit to measurements, as shown in Fig. 2. 

C. Vector Model 

The vector generalization of the scalar model is based on 

the approach of Mayergoyz, who extended the scalar Preisach 

hysteresis model to vector fields in [1]. In this method, the 

flux-density vector is projected into a finite number nφ of 

directions ui in a semicircle φi  [-π/2, π/2], the scalar model 

is applied into these directions, and the output field-strength 

vector is obtained as a sum of the scalar contributions from 

each direction. In a similar manner, we project both the flux 

density b and the stress σ: 

 
i ib  b u  and  i i i  σu u , (3) 

and input these projections to the unidirectional model. The 

output field strength and magnetostriction are then obtained in 

a local coordinate system aligned with ui: 
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The field strength is parallel to ui while the magnetostriction 

has principal components parallel and perpendicular to ui, the 

latter defined by the magntostrictive Poisson’s ratio 0.5. 

The vector model output is then formed by transforming hi 

and λi back to a global coordinate system and summing up the 

contributions from each direction: 
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being the transformation matrices between the global and local 

coordinate systems. 

III. RESULTS AND DISCUSSION 

The model was applied to calculate the magnetostriction 

tensor and field-strength vector for a circular flux density (1.5 

T) and an external 300-MPa compressive stress with its 

principal axis in the direction of 120°. The unidirectional 

magnetostriction was obtained from (2) but otherwise the SJA 

model parameters were equal to those in Fig. 1 of [3]. nφ = 32 

directions were used in the angular discretization. 

The locus of Fig. 3 a) clearly shows that more field strength 

is needed in the direction of the principal axis of the 

compressive stress in order to keep the flux density circular. 

When the magnetostriction is compared to measurements with 

a single-sheet tester in Fig. 3 b), a similar instantaneous 

behavior is observed. Although the sample was not stressed 

during the measurements and comprehensive identification 

measurements are yet to be done, the model can be concluded 

to produce physically reasonable results for both the field 

strength and magnetostriction. In the future, measurements 

with stressed samples will be done for further comparison. 

REFERENCES 

[1] I. D. Mayergoyz, “Vector Preisach hysteresis models (invited),” J. Appl. 

Phys. Vol. 63, No. 8, April 1988. 

[2] A. J. Bergqvist, “A simple vector generalization of the Jiles-Atherton 
model of hysteresis," IEEE Trans. Magn., Vol. 32, No. 5, September 

1996. 

[3] M. J. Sablik, D. C. Jiles, “Coupled Magnetoelastic theory of magnetic and 
magnetostrictive hysteresis,” IEEE Trans. Magn., Vol. 29, No. 3, July 

1993. 

[4] K. Fonteyn, A. Belahcen, R. Kouhia, P. Rasilo, A. Arkkio, “FEM for 
Directly Coupled Magneto-Mechanical Phenomena in Electrical 

Machines,” IEEE Trans. Magn., Vol. 46, No. 8, pp. 2923-2926, August 

2010. 
[5] L. Bernard, X. Mininger, L. Daniel, G. Krebs, F. Bouillault, M. Gabsi, 

“Effect of Stress on Switched Reluctance Motors: A Magneto-Elastic 

Finite-Element Approach Based on Multiscale Constitutive Laws,” IEEE 
Trans. Magn., Vol. 47, No. 9, pp. 2171-2178, September 2011. 

[6] L. Bernard, X. Mininger, L. Daniel, J. V. Leite, N. Sadowski, N. Batistela, 

“Vectorial magnetic hysteresis model taking into account the mechanical 
stress for use in 2D FEM,” CEFC, Oita, Japan, November 2012. 

[7] L. Vandevelde, J. Gyselinck, M. A. C. De Wulf, J. A. A. Melkebeek, 

“Finite-element computation of the deformation of ferromagnetic material 
taking into account magnetic forces and magnetostriction,” IEEE Trans. 

Magn., Vol. 40, No. 2, pp. 565-568, March 2004.  

 

 

a) b) 

Fig. 2 Measured magnetostriction as a function of stress and magnetization 
and the best fit using model (2). 

Fig. 3 a) Modeled and b) measured magnetostriction with rotating flux density. 
The simulated external stress and field strength are also shown in a). 


