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Abstract—Accurate electromagnetic design must take into
account the multiaxial magneto-mechanical loadings experienced
by electromagnetic devices. It should also include the description
of hysteresis behavior which is of primary importance in the
efficiency of these devices. Based on a vectorial extension of
the classical Jiles-Atherton model, we introduce the magneto-
mechanical effects using a multi-scale anhysteretic approach. The
model allows to describe with reasonable accuracy the perme-
ability, coercive field and hysteresis losses density of magnetic
materials submitted to magneto-mechanical loadings. It is then
used in a time-stepping finite element model to evaluate the effect
of the stress due to binding process on the hysteresis losses in
the rotor of a switched reluctance motor.

Index Terms—Electric machines, Magnetomechanical effects,
Magnetostriction, Magnetic materials.

I. INTRODUCTION

In many applications, the resolution of coupled magneto-
mechanical problems must be addressed considering the com-
plex hysteretic constitutive law of ferromagnetic materials.
Because of the multiaxial nature of the magneto-mechanical
loadings, predictive models must be implemented in order to
study real electrical engineering problems. An anhysteretic
multi-scale model (MSM) based on energy considerations at
the grain scale and on homogenization/localization procedures
at the polycristal scale has been developed [1] to overcome
the restrictions of uniaxial models [2]. Here, we show that
the information brought by the MSM can be advantageously
used to extend the vectorial Jiles-Atherton (JA) [3] model and
describe hysteretic magneto-mechanical behaviors.

II. MAGNETIC HYSTERESIS UNDER STRESS

The vector generalization of the JA model proposed by
Bergqvist [3] is here used as a phenomenological framework
to describe magnetic hysteresis. In this model, the vector
variation of the magnetization (dﬁ) must satisfy:

dM = (P.(dH + BdM))* i, + c dM,, (1)

with ¢ = 1/k(Ma — M) = 1 /k”]\7l,m - M“ﬁX In these equa-
tions, H is the applied magnetic field, 8 (usually noted ), ¢
and k are the classical JA scalar parameters (isotropic materials
are considered here), and M,, represents JA’s anhysteretic
magnetization. It is assumed that mechanical stress affects the
susceptibility and the coercive field of the material so that a

dependence to both applied magnetic field and stress tensor
(o) is introduced in the definition of M,, and k.

In order to describe the anhysteretic behavior under complex
magneto-mechanical loadings, a full MSM approach [1] can
be used. However, its practical implementation into numerical
analysis tools would lead to prohibitive computation time. This
is why we consider a simplified MSM which was shown to be
efficient and suitable for 2D finite element analysis [4]. The
material is modeled as a single crystal made of a collection of
magnetic domains randomly oriented in the modeling plane. At
the scale of the magnetic domain, the local magnetization ]\71[,
and magnetostriction strain &, depend only on the orientation
of the domain @ and the saturation values of magnetization
(M) and strain. The local potential energy W, of the material
is then written as the sum of magneto-static and elasto-static
contributions, W, = —,uoﬁ .]\710 — 0 : &,. The volume fraction
of each domain family f, is then calculated using a Boltzmann
type relation:

fa = exp(_As-Wa)/feXp(_As-Wa) )

where A; is a material parameter linked to the initial anhys-
teretic susceptibility [4]. The macroscopic anhysteretic mag-
netization is finally obtained thanks to an averaging operation
over all possible directions.

Considering now the JA model, the parameter k directly
acts on the coercive field and is strongly related to the density
of pinning sites and wall displacements [5]. We consider a
twofold correction of the no-load value kg:

Man T ad >
k= k0(1 a7 )(1 + Kf(l - Efo fr |a.m|da)) (3)

where «, and ks are constant parameters, and 711 = am [dM.
The first term accounts for the fact that the contribution of
wall bending increases as the magnetization increases. This
kind of correction was originally introduced in [5]. The second
term aims at accounting for the effect of stress through the
volume fractions f, obtained from the MSM. Following the
interpretation proposed by Pulnikov [6], the magnitude of wall
displacements decreases as the volume fraction of domains
“well” oriented with respect to 7 increases. In the proposed
correction, the (—m/2 |07‘ﬁ|) function could be substituted by
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Figure 1: Predicted hysteresis loops (left) and coercive field

and hysteresis losses density (right) for an iron-silicon steel
under uniaxial stress applied parallel to the magnetic field.
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Figure 2: Radial (left) and azimuthal (right) stress distribu-
tions. The arrows represent for the magnetic induction.

other convenient functions of the angle (&,71)), decreasing on
[0, 7/2] and symmetric with respect to kx/2 for any integer k.
The 7/2 factor ensures that the correction is zero for a uniform
distribution of magnetic domains.

Equation (1) is discretized using centered differences and
the expression of the magnetization is kept implicit. The model
is tested under uniaxial loading with the set of parameters
shown in Table I for Fe-3%Si steel sheets. Parameter «, allows
to manage the variation of the width of the loop with respect to
the magnetization. Parameter «, allows to fit the evolution of
the coercive field, and hence of hysteresis losses as a function
of stress. These parameters are identified from uniaxial tests.
Results shown in Fig.1 are consistent with experiments [7].

Table I: Material model parameters
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III. HYSTERESIS LOSSES IN THE ROTOR OF A SRM

We consider a locked rotor test of a switched reluctance
motor (SRM), the mechanical stress is caused by the binding
process between the rotor sheets and the shaft. The phase of
the stator which is in conjunction is fed by a sine current
source. Discarding flux leakage and accounting for the sym-
metries, only one quarter of the rotor and the air gap are
modeled. The stress distribution is computed once using a
2D plane stress linear elasto-static finite element formulation.
Magnetostriction strain is neglected. The radial displacement
u? is enforced on the rotor/shaft interface (at r = 1.15¢m). The
magneto-static problem is solved using a 2D scalar magnetic
potential formulation. At each time step, the non-linearity
is handled using the local coefficient polarization method
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Figure 3: Hysteresis losses density: absolute value (left) and
relative value compared to the unstressed configuration (right).
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Figure 4: Hysteresis loops at points 1 and 2 and total losses.

proposed by Dlala et al. [8]. The magneto-mechanical loading
is shown in Fig.2 for u? = 3.5um. The resulting distribution of
density of hysteresis losses wy, is computed for different values
of the imposed mechanical displacement u®. An example is
given on Fig.3 (left). The relative difference between the
loss density with and without stress is also presented (right).
Finally, the effect of stress on the hysteresis loops at points 1
and 2, and on the total losses are shown in Fig.4.

In conclusion, the proposed model constitutes a new ap-
proach to take into account the effects of mechanical stress in
magnetic materials. It is computationally efficient for use with
FE methods. In a realistic configuration, the complex magneto-
mechanical loading is shown to highly affect the hysteresis
losses density and then must be carefully considered.
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