
Abstract—This paper presents a vector Jiles-Atherton 
hysteresis model for anisotropic bonded NdFeB permanent 
magnet to estimate the residual magnetic flux density accurately.  
The finite element analysis procedure taking into account of the 
vector Jiles-Atherton hysteresis model is applied to analyze the 
magnetizing field which is generated by a capacitor discharge 
impulse magnetizing fixture. 

Index Terms—Anisotropic bonded NdFeB permanent magnet, 
magnetizing analysis, vector Jiles-Atherton hysteresis model. 

I. INTRODUCTION 
Bonded NdFeB permanent magnets based on anisotropic 

magnet powders are attractive for many applications since 
they offer significant advantages in terms of flexibility of 
manufacture compared to sintered one, while having relatively 
higher residual magnetic flux density and maximum magnetic 
energy product than conventional isotropic bonded NdFeB 
permanent magnets [1]. 

In order to improve magnetic performance as much as 
possible, it is necessary to ensure that the anisotropic magnet 
powders are fully aligned with the proper orientation during 
forming process. 

Although the magnetic property of the anisotropic bonded 
NdFeB magnets such as residual magnetic flux density mainly 
depends on the orientation ratio of particles which is decided 
by alignment field, there does not exist any general guidance 
for magnetizing the anisotropic bonded NdFeB magnet.  

Scalar Jiles-Atherton hysteresis model has been already 
applied to predict the residual magnetic flux density 
distribution [2]. However, it is not accurate for anisotropic 
magnet because, in fact, not only easy axis but also hard axis 
has contribution to magnetization M of PM, especially when 
the magnetic induction vector is parallel with the hard axis of 
the magnet. Therefore, it is necessary to utilize the vector J-A 
hysteresis model to predict residual magnetic flux density 
accurately.  

In this paper, a systematic numerical method which 
combines transient finite element method (FEM) with vector 
J-A hysteresis model is proposed to predict the distribution of 
the residual magnetic flux density of the anisotropic bonded 
NdFeB magnet accurately.   

II. PROBLEM DESCRIPTION 
In order to determine the residual magnetic flux density 

distribution, a transient FEM combined with scalar J-A 
hysteresis model is applied in our previous work. Fig. 1 shows 
the inner surface magnetic flux density distribution of PM 

with back yoke by using the previous presented method. From 
the figure, it can be said that the significant error between 
predicted and measured results happened at transition region 
of north and south poles. This is because in the transition 
region there is relatively bigger angle difference between easy 
axis of the anisotropic magnet and magnetizing field 
orientation.  

In the previous work, we assume only the component of 
magnetizing field which is parallel with easy axis of PM 
contributed to magnetizing PM. However, in fact, even at hard 
axis of PM, the contribution of magnetization cannot be 
ignored, especially when big magnetizing field component is 
parallel with hard axis. As shown in figure 2, it can be seen 
that even when the angle difference between aligning 
direction and magnetizing direction is 90°, the magnetization 
is almost 10% compared with parallel condition. This 
component of M cannot be ignored when the accurate result is 
required. Therefore, a vector J-A hysteresis model combined 
FEM method is necessary to develop to estimate accurate 
residual magnetic flux density result for the anisotropic 
bonded NdFeB magnet. 
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Fig. 1.  Calculated inner surface magnetic flux density distribution compared 
with measured one. 
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Fig. 2.  Normalized magnetization with different magnetization angle against 
preferred orientation (easy axis). 



III. VECTOR JILES-ATHERTON HYSTERESIS MODEL  
The vector generalization process of the J-A hysteresis 

model is presented in [3]. In order to combine the vector J-A 
model with FEM, the inverse J-A model which takes the 
magnetic flux density as independent variable is defined. The 
detailed form of the inverse vector J-A model for 2-D 
implementation is given by [4]. 

In the main equations of the vectorized hysteresis model, an 
auxiliary vector variable was introduced: 

( )1
an irrf kχ −= ⋅ −M M

r &&  (1) 

where Man, Mirr, and k&&  are the anhysteretic magnetization, 
irreversible magnetization, and a second rank tenser, 
respectively. The coefficients of the second rank tenser can be 
identified from measuring hysteresis loops of easy and hard 
axis of PM. The effective magnetic field vector variation is 
defined as follows: 

ed d dα= +H H M&&  (2) 
where H is the applied field and α&& is a tenser which is 
identified from measurement data. 

The evolution of the magnetization vector is calculated with 
vectorized hysteresis model accordingly to the sign of the 
scalar product between fχ

r
and dHe as follows: 
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where 1 is the diagonal unity matrix, c&& is a tenser calculated 
from experimental data, and ξ&& is the diagonal matrix of the 
derivatives of the anhysteretic functions with respect to the 
effective field component. The equations (3) and (4) are the 
vector forms of the inverse J-A hysteresis model and vector M 
can be derived from vector induction value B. 

IV. ANALYSIS METHOD 
It is assumed that the permanent magnet material is 

orthogonally anisotropic [5]. Fig. 3 shows the analyzed 
capacitor discharge impulse magnetizer. The effects of eddy 
currents in the magnet can be ignored due to high resistivity of 
magnet. In 2-D analysis, the magnetic field governing 
equation in the FEM is written as:  

0 0A J Mν ν∇×∇× = + ∇×
r r r

 (5)                                                                           

where υ is the medium reluctivity, υ0 is the vacuum reluctivity, 
A is the magnetic vector potential, J0 is the applied current 
density calculated from the electric circuit, and M is the 
magnetization of permanent magnet determined from the 
initial magnetization curves or modeled hysteresis loops.  

When a voltage source consisting of a capacitor is applied 
to the magnetizing winding, the discharge current is unknown. 
In this case, to calculate the magnetic field, it is necessary to 
couple (5) with the external circuit equation shown as follows:  

0 0 0d dt RI L dI dt Q Cλ + + − =  (6) 

where λ is the flux linkage of the exciting coil for magnetizer, 
R is the winding resistance, L0 is the leakage inductance, and 
Q0 is the initial charge stored in the capacitor. The discharge 
current I can be expressed by voltage on capacitor Vc and 
capacitance C as follows:  

.cI C dV dt= −  (7) 
In the analysis, the magnetization component Mx, and My of 

PM in each element are calculated by vector J-A hysteresis 
model [6]. When the discharge current decreases to zero, M in 
each element of the PM is recorded. Finally, the residual M or 
B vector of the PM can be estimated. Fig. 4 shows the residual 
magnetic flux density vector distribution of PM. In the full 
version paper, the detail numerical analysis procedure and 
results will be shown. 
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Fig. 3.  Analysis model of magnetizer. 

       
Fig. 4.  Br vector distribution in PM. 


