
8. MATERIAL MODELLING 

Abstract — A hysteresis model for thermal and magnetic 

demagnetization of permanent magnets is proposed. It is 

based on the assumption that the evolution of the 

magnetization is driven by minimization of an energy function 

but is prevented from reaching the global minimum by a 

friction-like counterforce. Irreversible thermal effects 

resembling experiments emerge automatically by allowing the 

energy and the frictional force to be functions of temperature. 

The resulting model is computationally simple in any number 

of dimensions and all adjustable material parameters are 

easily found from measurements commonly available from 

permanent magnet suppliers. 

I. INTRODUCTION 

Permanent magnets are employed in various 

electromagnetic applications such as PM machines. Such 

devices can be subjected to conditions that cause partial 

demagnetization of permanent magnets, leading to a 

degraded performance. The demagnetization can come 

from high temperatures or from magnetic fields opposed to 

or perpendicular to the magnetization direction. Modelling 

such effects requires a temperature dependent hysteresis 

model. Inclusion of thermal effects has been proposed for 

the Jiles-Atherton model [1] and the Preisach model [2]. 

Maugin has suggested following the formalism of structural 

hysteresis models [3] which are often expressed in a 

thermodynamic framework where  the incorporation of 

irreversible thermal effects is nearly automatic. In this 

work, we will formulate such a model for magnetics and 

include thermal effects with a minimum of additional 

assumptions and adjustable parameters. 

II. MODEL FORMULATION 

 

We begin with the case without thermal effects. 

basically using a simplified case of the model presented in 

[4], briefly outlined here. According to the principle of 

energy conservation, change in work W equals the sum of 

change in free energy F and loss  Q, 

    ̇    ̇    ̇              (1) 

 

 Consider these three terms in turn. The rate of work is 

 ̇   
 
   ̇. We assume that the free energy F of the 

material depends only on the current magnetization M so 

that  ̇           ̇. Furthermore assume that the loss is 

proportional to the absolute value of  ̇  by some coefficient 

 0k, giving 

     ̇        ̇      ̇              (2) 

where we also have defined Han(M) = ( F/ M)/ 0. 

Quasistatic hysteresis appears due to using | ̇| in the loss 

term since it means that for a given H, there are multiple 

values of M such that (2) is satisfied and vice versa. In the 

loss-free case with    , (2) reduces to H = Han(M), 

which justifies considering Han(M) as the anhysteretic 

curve. We may interpret the behavior as follows: The 

magnetization strives towards a value such that 

G(H,M)=F(M)   0 H M is minimized. The global 

minimum occurs when  0  G/ M= Han(M)H=0. However 

all values such that |HHan(M)|k are metastable due to a 

friction-like resistance. Should H attain a value such that |H 

 Han(M)|> k, then M will instantly move in a direction 

parallel to ( G/ M) and by such an amount that the state |H 

 Han(M)| = k is reached. The model is basically a variation 

of Coulomb friction, a very old vector hysteresis model. 

Numerically, the evolution law for getting M from H 

can be expressed as a two-step process. We employ the 

anhysteretic field ha := Han(M) as an auxiliary variable. As 

shown in [4], the relation between H and ha is that of a 

vectorial play and an incremental change in ha can be 

expressed  
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The magnetization is then found as  

                           (4) 

 

where Man is the inverse function of Han.  

We then turn to the case where the temperature T is 

allowed to change. Temperature will obviously affect the 

energy F in the material. As k can be interpreted as a 

manifestation of a small ripple contribution to energy [4], 

this too can be expected to be a function of temperature.  A 

straightforward generalization of the temperature 

independent model is then to simply allow F, and by 

implication Man, and k to be functions of temperature. Thus 

we generalize the evolution equations (3),(4) to  
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Expressions (5),(6) may be used to evaluate M for any 

arbitrary variations of H and/or T over time.  

III. PARAMETER DETERMINATION 
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The adjustable material parameters in the model are the 

functions Man(ha,T) and k(T). We shall here only consider 

the isotropic case. Consider a demagnetization curve at 

some given temperature T. Along this curve, it holds that ha 

= H + k(T), so  

 

                                       (7) 

 

Due to symmetry, Man(0,T)=0. Thus, k(T) is the intrinsic 

coercivity at temperature T and Man(H,T) is found by 

shifting the demagnetization curve by k(T) and so all 

adjustable parameters can be found from a set of 

demagnetization curves measured under different 

temperatures. Such data is often provided by manufacturers 

of permanent magnets. Furthermore, a parametric model for 

such curves was proposed in [5]. This result can be 

incorporated here, in the simplest case leading to 
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Here T0 is some reference temperature for which a 

demagnetization curve is measured and  ,  are adjustable 

parameters giving a linear dependence in temperature for 

coercivity and remanence respectively. All adjustable 

parameters can in that case be found from a 

demagnetization curve measured at one temperature, and 

intrinsic coercivity and remanence measured at another 

temperature.  

IV. SOME RESULTS 

Some typical results are shown in Figs 1-2 using 

Man(H,T0)= H/(1+|H|/Ms) with Ms=1.0 MA/m, =100 and 

thermal coefficients   =0.001K
-1

,    =0.005K
-1

. Isothermal 

major M-H loops are shown in Fig 1. Minor loops consist of 

horizontal segments crossing between the major loop 

branches. Real materials exhibit more complex minor 

loops. This is a limitation due to the assumption that the 

energy and the loss depend only on M and | ̇| respectively.   

 

 
Fig. 1.  Magnetization vs field strength at T=0 C, 60 C and 120 C. 

 
 

 

 
Fig. 2.  Thermal demagnetization in magnetic circuit with airgap. 

 

Fig 2. shows an example of thermal demagnetization in 

a magnetic circuit with airgap. After initial magnetization, 

the temperature is repeatedly increased and decreased with 

gradually higher peak value. Here neither H or M is known 

a priori but they are determined through a constant ratio 

between H and B. Such experiments were performed in [6] 

and these calculations show very similar behavior. 

V. CONCLUSIONS 

A hysteresis model has been presented that predicts 

magnetization for arbitrary variations in field and 

temperature. It is based on a thermodynamic formulation 

where irreversible thermal effects emerge automatically and 

no adjustable parameters appear other than those found 

from isothermal measurements. Thermal demagnetization 

results resemble those of experiments. Limitations that will 

be addressed in future work are that minor loop behavior is 

overly simplistic and that thermal demagnetization and 

demagnetization from field cycling lead to the same state. 
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