
 

Abstract—The proper orthogonal decomposition (POD) is one 

of the effective approaches for model order reduction. In this 

method, reduced models are constructed from relatively small 

number of the snapshots of original fields. This paper discusses 

application of POD to analysis of electromagnetic waves. The 

original wave problems are analyzed using finite element method 

where the perfect matched layer is employed to model absorbing 

boundaries. The reduced models in time domain are constructed 

from original solutions in either time-domain or frequency-

domain. The accuracy and numerical stability of the present 

method are discussed. 

Index Terms—Wave propagation, model order reduction 

proper orthogonal decomposition, finite element method. 

I. INTRODUCTION 

Model order reduction (MOR) has attracted attentions 

because it can effectively shorten the computational time of 

electromagnetic analysis. For example, the coupled analysis of 

circuits and antenna can easily be solved if the Maxwell 

equation for the antenna is transferred to ordinary differential 

equations with small number of unknowns. There are two 

approaches for MOR: one constructs the reduced system 

directly from the original system matrix while another 

generates it from the relatively small number of snapshots of 

the original fields. The former can effectively performed by 

the Pade-via-Lanczos method [1]. In fact, electromagnetic 

fields have successfully been analyzed using this method [2]. 

However it would be difficult to apply this method to wave 

problems with open boundaries as well as nonlinear problems. 

On the other hand, in the second approach called proper 

orthogonal decomposition (POD), the basis vectors of the 

reduced system are obtained by the principal component 

analysis in which the data matrix is constructed from the 

snapshots of the original fields. This method could be applied 

to a wider class of problems since POD can essentially be 

performed when the original problem can be solved. 

Magnetostatic and quasi-static problems have been solved 

using POD [3, 4]. However, it remains unclear if POD is valid 

for wave problems. 

In this work, the reduced models of the wave problems are 

constructed on the basis of POD. The basis vectors of the 

reduced system are generated from original solutions in either 

time-domain or frequency-domain. The numerical stability, 

passivity, accuracy and effectiveness of this method will be 

discussed in detail. 

II. FORMULATION 

A. TD-FEM for wave problems 

Let us consider wave propagation in the infinite finite 

domain, which is analyzed using finite element method (FEM). 

To model the absorbing boundary of the FE domain, we 

employ the perfect matched layer [5]. The governing equation 

in frequency domain is given by 
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E, ν,   and J are electric field, magnetic resistivity, 

conductivity, permittivity, angular frequency and current 

density. To transform (1) to the time domain form, we apply 

the inverse Laplace transform to it to obtain 
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and u(t) and * denote the unit function and convolution 

operator and the definition of L1, L2, J, K1 and K2 is written by 

[6]. Applying the weighted residual method to (4), we obtain 

the FE equation given by 

begehe
ee










)()(CBA

2

2

tt
, (7) 

where 
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and Nj is vector interpolation function and the definition of Uj, 

Uj
+ 

and Uj
++

 can be found in [6]. We solve (7) by employing 

the Newmark Beta method for approximation of the time 

derivative to obtain the snapshots of the original solutions.  

B. Proper Orthogonal Decomposition 

In this paper, POD is applied to wave problems. In this 

method, from the snapshots of the original solution the basis 

vectors of the reduced system are generated via the principal 

component analysis. In this short paper, we consider the POD 

based on the time-domain snapshots xkR
m
 (k=1, 2 ,3 ), 

from which the data matrix X is constructed as follows: 

 μxμxμx  s21X , (13) 

where s is the number of snapshots and  is the mean vector. 

To get the basis vectors, we apply the singular value 

decomposition to matrix X, which results in 
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where wi and vi are the eigenvectors of the matrices XX
t
 and 

X
t
X, respectively and i, i=1,2,,s are the singular values 

which correspond to the square root of the eigenvalues of XX
t
. 

The original unknown vector x is approximately expressed by 

the linear combination of the reduced vector yR
s
 as follows:  

.Wyx    (15) 

Now we can transform (7), which is here expressed by Kx=b 

for simplicity, to the reduced form as follows:  
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III. NUMERICAL RESULT 

We solve the numerical model shown in Fig. 1 using the 

present method, where a sinusoidal current flows around the 

brick shaped magnetic material. FE model has 15600 nodes, 

13718 elements and 44840 edges. The driving current and 

frequency f is 1AT and 150MHz. Time step t is set to 1/ 250f. 

The permeability r in the magnetic material is 10. The results 

are shown in Fig. 2 where (a) and (b) show the distribution of 

magnetic flux density computed by the conventional FEM and 

the present method with s=100. We find in Fig.2 that both 

magnetic fields are almost identical. This suggest that the 

present method can provide accurate reduced system, which 

would be useful for fast simulation of antennas loaded by 

electric circuits where circuit parameters are changed for their 

design. 

IV. CONCLUSION 

In this paper, we have presented the model order reduction 

based on POD for the wave problem. Although the present is 

accurate in generation of the reduced model of the numerical 

example, we still need careful discussion on its performance. 

We will apply the method which determines the adequate 

number of snapshots automatically [4] to wave problems. 

Moreover, POD based on the snapshots in frequency domain 

will be discussed in the full paper.  
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(a) Original solution 

 
(b) Solution obtained by present method with s=100. 

Fig. 2.Distribution of magnetic flux density 
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Fig. 1. Numerical model 


