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Abstract—This paper presents the numerical computation of
quasimodes (complex frequencies) of 3D open structures using
the Finite Element Method (FEM) combined with Perfectly
Matched Layers (PMLs) in order to truncate the infinite domain.
The PMLs provide a suitable non-Hermitian extension of the
scattering operator associated to the problem and unveil some
quasimodes (leaky modes) by rotating the continuous spectrum
in the complex plane. The unveiling of the modes depends
on the parameters of the PML but the modes themselves
are independent of these PML parameters and inhere in the
structure. The FEM formulation leads to non-Hermitian matrices
with complex eigenvalues that can be numerically computed. The
PMLs are presented in the framework of transformation optics
as a complex-valued change of coordinates. This model is applied
to the Haroche QED cavity (used for the researches that have
led to the recent 2012 Nobel Prize of Physics).

Index Terms—Finite element methods, Eigenvalues and eigen-
functions, Cavity resonators.

I. RESONANCES OF OPEN RESONATORS USING PERFECTLY
MATCHED LAYERS

The major difficulty in the treatment of open problems in a
numerical scheme based on a finite computational window
is to deal with infinity issues. Since their introduction by
Bérenger in [1] for the time dependent Maxwell’s equations,
Perfectly Matched Layers (PMLs) have become a widely used
technique in computational physics. The idea is to enclose
the area of interest by surrounding layers which are absorb-
ing and perfectly reflectionless. These absorbing boundary
conditions can be understood in the global framework of
transformation optics ([2]). The principle of the technique is to
perform a geometrical transformation (here a complex stretch
of coordinates), leading to equivalent material properties ([3]).
The spectral problem we are dealing with consists in finding
the solutions of source free Maxwell’s equations, i.e. finding
complex eigenvalues Λn = (ωn/c)

2 and non zero eigenvectors
~En such that :

M( ~En) := ~∇×
(
µ−1 · ~∇× ~En

)
= Λn ε · ~En. (1)

where ε and µ are the relative dielectric permittivity and
magnetic permeability tensors describing the electromagnetic
properties of the system (cavity+external world).

For Hermitian open problems, the generalized spectrum of
Maxwell’s operator M is real and composed of two parts:

the discrete spectrum with trapped modes exponentially de-
creasing at infinity, and the continuous spectrum with radiation
modes oscillating at infinity. In addition, another type of
solution is present and very useful to characterize the spectral
properties of unbounded structures: the so-called leaky modes
(also termed quasimodes). These eigenmodes with complex
associated frequency are an intrinsic feature of open structures.
PMLs have proven to be a very convenient tool to compute
leaky modes in different configurations ([4], [5]). Indeed they
mimic efficiently the infinite space provided a suitable choice
of their parameters. The introduction of infinite PMLs rotates
the continuous spectrum in the complex plane (since the
operator involved in the problem is now a non self-adjoint
extension of the original self-adjoint operator). The effect is
not only to turn the continuous spectrum into complex values
but it also unveils the leaky modes is the region swept by
the rotation of this essential spectrum ([6]). It is important
to note that leaky modes do not depend on the choice of a
particular complex stretching : adding the PMLs is only a
way to discover them. Finally, in order to apply the FEM,
the PMLs have to be truncated at finite distance which results
in an operator having only point spectrum with approximate
radiation modes (also termed as PML modes or Bérenger
modes) due to the discretization of the continuous spectrum
by finite PMLs ([7]). In the sequel, eigenvalues are denoted
ωn = ω′n+iω′′n. The real part is the resonant angular frequency
ω′n = 2πfn and the imaginary part is the damping coefficient,
which is related to the lifetime τn of the photon in the cavity
by ω′′n = 2π/τn. The quality factor associated to a resonance
is defined by Qn = ω′n/(2ω

′′
n).

II. NUMERICAL RESULTS

In this section we study the open QED cavity described in [8]
by searching for its eigenmodes and complex eigenfrequency,
using a Finite Element Method (FEM). This classical elec-
trodynamic approach allow us to derive a number of features
observed experimentally by Haroche and coworkers ([9]). A
detailed description of the cavity can be found in [8]. It is
composed of two mirrors of diameter D = 50 mm facing each
other. The distance between their apexes is L = 27.57 mm,
and their surface is toroidal with radii of curvature r =
39.4 mm in the Oxz plane and R = 40.6 mm in the
Oyz plane. The mirrors are coated with a thick layer of
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Figure 1. Field maps of a quasimode.

superconducting niobium. We take advantage of the symmet-
ries of the problem and thus model only one eighth of the
cavity to save memory and computation time. By setting a
well chosen combination of Neumann and Dirichlet boundary
conditions on the cutting planes, we can select the modes with
desired symmetries. The eigenproblem defined by Eq.(1) is
then solved by the FEM, using cartesian PMLs terminated
by homogeneous Neumann boundary conditions to truncate
the infinite space. The computational cell is meshed using 2nd

order edge elements, with a maximum size of an element set
to λr

|Re ε|N , where λr = 3.68 cm is the approximate resonant
wavelength of the cavity, and N is an integer (N = 7 for the
domain inside of the cavity, N = 7 for the domain outside
the cavity, N = 5 for the PMLs and N = Nm for the mirror
surfaces). The final algebraic system is solved using a direct
solver (PARDISO). In order to account for losses, absorption is
considered through a Surface Impedance Boundary Condition
(SIBC) with Zs = Xs +iYs on the boundaries of both mirrors.
London penetration depth for niobium LL (independent of
the frequency) is set to a typical value of 0.1 µm and the
imaginary (inductive) part of the impedance can be approxim-
ated by Ys = ωµ0LL = 6.4 µΩ. As for the real (resistive)
part of the impedance, it is extremely difficult to measure
and greatly depends on numerous experimental conditions.
Therefore, our only option is to estimate this parameter to
obtain lifetimes of the same order of magnitude as measured
in [8]. Finally, we adjusted the length of the cavity to find
resonant frequencies close to those measured in [8]. With
the value of L=27.562 mm (instead of 27.57 mm in [8]), the
system exhibits two resonant frequencies f1 = 51.0984 GHz
and f2 = 51.0997 GHz (τ = f1 − f2 ≈ 1.29 MHz). The
convergence as function of mesh refinement is reached (see
Fig. 2) for Nm = 40. With Xs = 1 µΩ, we obtain lifetimes
of ∼100 ms for both modes (see Fig. 3) i.e. Qn ∼ 2.5 109,
which corresponds to the average lifetime found in [8] for
two cavities (supposed to be identical): 112±4 ms (LF mode)
and 87 ± 10 ms (HF mode) for M1, 74 ± 6 ms (LF mode)
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Figure 2. Resonance frequencies of the two longest life modes vs. mesh
parameter.
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Figure 3. Lifetimes of the two longest life modes vs. mesh parameter.

and 130± 4 ms (HF mode) for M2. This value of Xs should
be seen as an upper bound of the resistive phenomenon. It
includes all other loss processes than radiation loss: roughness
of the mirrors, superconductor imperfections. . . but the fact that
the discrepancy between lifetimes corresponding to the two
cavity modes is greater experimentally than numerically tends
to indicate a residual tilt between the two mirrors.
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