
Abstract—A novel 3-D FDTD formulation for the precise analysis 
of electromagnetic wave interactions with graphene structures is 
presented in this paper. The main concept takes into account the 
surface nature of graphene’s conductivity and incorporates it directly 
into Maxwell’s integral equations, avoiding the necessity to discretize 
the material’s transverse dimension via a subcell scheme. So the pro-
posed technique is much easier to implement and combined with exist-
ing FDTD codes, as it requires less computational time. Numerical 
verification involving comparisons with closed-form solutions and the 
results of existing schemes, exhibits the high accuracy of the method. 

Index Terms—Graphene, auxiliary differential equation, FDTD 
methods, surface conductivity. 

I. INTRODUCTION 
Since its initial discovery, graphene has attracted a major 

scientific interest because of its extraordinary physical proper-
ties and promising future prospects [1]. The most critical under-
lying characteristic is that the energy-momentum relationship 
for electrons is linear at low energies, rather than quadratic. 
Consequently, electrons behave as massless relativistic particles 
of high mobility (Dirac fermions) with an energy-independent 
velocity, making ballistic transport devices a feasible perspec-
tive [2]. Actually, it has already found very interesting applica-
tions in the areas of modern integrated circuits [3] and optoelec-
tronics [4], while it is anticipated to be utilized in several devic-
es from transformation optics, taking avail of its competence to 
support the propagation of surface plasmonic waves [5]. 

In this paper, a new 3-D explicit methodology is introduced 
for the treatment of graphene’s surface conductivity and therefore 
the modeling of electromagnetic phenomena in graphene ar-
rangements. The key merit of the algorithm is the direct incorpo-
ration of the surface conductivity of graphene into Maxwell’s 
integral equations and their finite-difference time-domain (FDTD) 
counterparts. For the analysis, the intraband term of the conduc-
tivity is considered and the surface current is extracted and insert-
ed in the update expressions via an auxiliary differential equation 
(ADE). So, the need to employ laborious subcell schemes is effi-
ciently overcome and the proposed technique is much simpler as 
well as faster than existing approaches, as it requires sufficiently 
less realization requirements. The frequency-dependent formula-
tion is certified by different setups and the results are compared to 
closed-form solutions and previously published data. 

II. GRAPHENE SURFACE CONDUCTIVITY MODEL 
The graphene is described by an infinitesimally thin surface 

conductivity variation, which via the Kubo formula [2], reads  
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Fig. 1. (a) Modified Yee cell including the graphene surface conductivity and (b) 
geometry of a graphene arrangement. 
 

with ω the radian frequency, μc the chemical potential, Γ a phe-
nomenological scattering rate assumed to be independent of 
energy ε, Τ the temperature, -e the electron charge, ħ = h/2π the 
reduced Planck’s constant, fd(ε) = [e(ε–μc)/kBT+1]-1 the Fermi-Dirac 
distribution, and kB Boltzmann’s constant. Our investigation 
focuses on the microwave and terahertz frequency spectrum, 
where the intraband term (first part of (1)) dominates over the 
interband term (second part of (1)). Furthermore, the chemical 
potential is obtained in terms of the carrier density ns, 
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where vF = 9.5×105 m/s is the Fermi velocity. In this context, 
the intraband section can be expressed as 

 2 2
intra / (1 )ce j          , (3) 

for τ = 1/(2Γ) =  μħ(nsπ)1/2/(evF) the scattering time, μ the carrier 
mobility, and ns = (μc)

2/[π(ħvF)2] the carrier density from (2). 

III. MODIFIED FDTD METHOD FOR GRAPHENE LAYERS 
The extraction of the proposed FDTD update equations is 

conducted through the implementation of Maxwell’s integral 
equations and their subsequent discretization by a second-order 
accurate scheme in a modified Δx×Δy×Δz Yee cell. Firstly, it 
should be clarified that for the rest of the domain, the convention-
al FDTD formulas are used, whereas the new change is required 
only at cells where the graphene sheet lies. Such a cell is depicted 
in Fig. 1(a), from which one may observe that the graphene sur-
face conductivity is located at the center of the element at the xy- 
plane. In order to deal with the general case, the dielectric space 
above the graphene layer has a permittivity ε1 and the one below 
the sheet a permittivity ε2. On the surface conductivity, the surface 
current is given, in the frequency domain, by 
 J E  , (4) 
where σ is determined through (3) for Jz = 0. Note that the dot 
signifies components in the frequency domain. 

Since graphene affects only the surface current term, the 
equations to be altered are only the ones derived from Ampere’s 
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law, while those of the magnetic field remain the same. Addi-
tionally, the graphene surface current is expressed as 

 ( )gr zJ J , (5) 

with graphene located on the xOy plane. So, for instance, Am-
pere’s integral law on the xz-plane of a modified Yee cell with 
the direct incorporation of (5) gives the Ey update equation, i.e. 
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where the typical FDTD notation is supposed. The presence of 
Δz in the denominator of the last term means that Jy becomes the 
surface current density instead of the volume one in [8]. 

Owing to its frequency-dependent nature, the surface current 
term needs to be treated by an ADE scheme, in which (4) serves 
as the auxiliary equation. In this sense, (3) is written as 

 intra / (1 )A j     , (7) 

with A = e2μcτ/(πħ
2) and so the auxiliary equation becomes 

  / 1y y y yJ E J AE j       J E      ,  (8) 

while in the time-domain it is written as 
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Similar equations hold for the Ex component, as well. In con-
trast, the Ez component is computed by a regular FDTD equa-
tion, as it does not lie on the surface of graphene. 

IV. NUMERICAL RESULTS – CONCLUSIONS 
For the validation of the new technique, we examine an infi-

nite graphene sheet placed between two dielectric subspaces and 
illuminated by a set of normally incident wideband plane wave 
pulses. Based on the configuration of Fig. 1(b), the infinite di-
mensions of the structure are modeled through the imposition of 
periodic boundary conditions at the lateral surfaces of the do-
main, thus forming a computational unit cell. Moreover, the 
incident field is launched via a total-field scattered-field formu-
lation [6], while the lattice comprises cubic cells with a spatial 
increment equal to the 1/20th of the minimum excited wave-
length in the material with the highest relative permittivity. Partic-
ularly, the excitation follows a simple Gaussian rule in time, with 
a bandwidth of 2 GHz and a time-step set at the highest value 
allowed by the Courant limit. Note that at the upper and lower 
boundaries, an 8-cell perfectly matched layer (PML) is imposed. 

The basic aim of the application is the extraction of the trans-
mission coefficient. Consequently, the field at the second dielec-
tric is monitored and its Fourier transform is extracted with an 
FFT scheme. As the normally incident electric field is linearly 
polarized along the y-axis, only one of its components is nonzero. 
So, for the extraction of the transmission coefficient, relation 

    t trans incT F E F E , (10) 

is applied, where Einc is the time waveform of the incident field, 
Etrans that of the transmitted field, and F{.} the Fourier trans-
form operator. Two simulations are conducted in which μc = 0.3 
eV and T = 300 K. The scattering rate is Γ = 0.11 meV and cor- 

 
 

Fig. 2. Magnitude of the graphene transmission coefficient. 
 

 
 

Fig. 3. Phase (in degrees) of the graphene transmission coefficient. 

 
responds to a mobility μ = 99729 cm2/Vs. Figure 2 illustrates the 
magnitude and Fig. 3 the phase of the transmission coefficient, 
as compared to the closed-form solution of the problem [7] and 
the outcomes of [8], where the graphene conductivity is mod-
eled by a subcell technique. As observed, the three curves of 
each case are in a very good agreement; a fact that proves the 
accuracy and convergence of the proposed method, yet with a 
much simpler and faster realization. These deductions enable its 
application to finite-sized structures, which do not have an analyt-
ical solution and will be elaborately explored in the full paper. 
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