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Abstract— Accurate results for the field gradient in a Stern-
Gerlach magnet are obtained by calculating a local analytic
solution using a finite-element solution as boundary conditions.
In contrast to standard post-processing based on numerical
differentiation, the improved technique preserves the convergence
order for the discretisation error.

Index Terms – Finite element methods, magnetostatics, con-
vergence of numerical methods, accelerator magnets, magnetic
separation.

I. INTRODUCTION

The Stern-Gerlach experiment splits a particle beam accord-
ing to their quantum spin [1]. For that purpose, the beam
is brought through a region with a large field gradient. The
original setup consists of two parallel wires, which allows to
express the field gradient by an analytic formula. Today, a
Rabi-type magnet with an iron yoke, a concave and a convex
pole shoe is used [2]–[4] (Fig. 1).

The design of a Rabi-type deflection magnet is supported by
2D nonlinear magnetostatic finite-element (FE) field simula-
tion. A particular numerical challenge arises when calculating
the field gradients during post-processing. Two successive
numerical differentiations are needed to derive the gradient
of the magnetic flux density B from the FE solution for the
magnetic vector potential A. When linear FE shape functions
are used, A converges like O(h2) where h stands for a
characteristic mesh size, whereas B converges like O(h) and
the field gradient may not converge at all [5] (Fig. 3). It
is obvious that this fact endangers the application of FE
simulation for designing a deflection magnet.

The problem can be alleviated by taking higher other FE
shape functions [6], inserting a boundary-element subdomain
[7] or applying spectral elements in the magnet aperture
[8], [9]. These methods all have their virtues, but cause a
considerable increase of the computational cost of the field
calculation. Here, we choose to keep a standard nonlinear 2D
FE solver and develop a new and dedicated post-processing
tool calculating magnetic field gradients while preserving
maximal convergence order. Similar approaches have been
reported for post-processing torques [10] and post-processing
boundary-element solutions [11].

Fig. 1. Magnetic flux lines in a Rabi-type magnet (half model).
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Fig. 2. Gradient in the x-direction of the x-component of the magnetic flux
density in the magnet aperture; comparison between (a) the solution obtained
by standard post-processing and (b) by the improved technique.

II. STANDARD POST-PROCESSING FOR FIELD GRADIENTS

The magnetic flux density (Bx, By) = ( dAz

dy ,−
dAz

dx ) is
found by differentiating the FE shape functions. When piece-
wise linear shape functions are applied for Az , (Bx, By) is
piecewise constant per element. A direct further differenti-
ation for the field gradient would lead to a zero solution.
A straightforward remediation of this problem consists of
interpolating the element-wise magnetic flux density onto the
nodes, i.e., Bi =

∑
k∈Ni

SkBk/
∑
k∈Ni

Sk where elements
k are selected from the neighbourhood Ni of node i and Sk
denotes the area of element k. The nodal solution is seen as a
piecewise linear solution in terms of the same shape functions
and can be further differentiated. When higher-order FE shape
functions are used, the element-to-node interpolation is not
needed. From Fig. 2a, it is obvious that this procedure leads to
poor results. Therefore, an improved post-processing technique
is indispensable when field gradients need to be determined
with the highest possible accuracy.
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Fig. 3. Convergence of the discretisation error for the gradient of the x-
component of the magnetic flux density in the x-direction. Comparison of
the standard post-processing approach by numerical differentiation of the
polynomial solution with the improved approach based on a local solution
of the Laplace equation.

III. IMPROVED POST-PROCESSING FOR FIELD GRADIENTS

By a standard 2D nonlinear magnetostatic FE solver, the
spatial distribution of the z-component Az(x, y) of the mag-
netic vector potential is calculated. On a rectangular domain
of size ∆x-by-∆y in the magnet aperture, a local analytical
solution of the governing Laplace equation ∂2Az

∂x2 + ∂2Az

∂y2 = 0
is constructed using the FE solution as boundary conditions:

A(lpl)
z (x, y) = α+ βx+ γy + δxy

+

∞∑
p=1

sin (ξpx) [ap cosh (ξpy) + bp sinh (ξpy)]

+

∞∑
q=1

sin (ηqy) [cq cosh (ηqx) + dq sinh (ηqx)] (1)

where ξp = pπ
∆x and η = qπ

∆y . The coefficients α, β, γ
and δ follow from the values of Az at the corner nodes.
The coefficients ap, bp, cq and dq are found by 1D Fast
Fourier Transforms [12] of the remaining potential distribution
at the sides of the rectangular boundary. Field gradients can
be obtained from (1) by double differentiation without loss of
convergence order, e.g., for dBx

dx ,

dB(lpl)
x

dx
(x, y) = δ

+

∞∑
p=1

ξ2
p cos (ξpx) [ap sinh (ξpy) + bp cosh (ξpy)]

+

∞∑
q=1

η2
q cos (ηqy) [cq sinh (ηqx) + dq cosh (ηqx)] (2)

It may make sense to truncate the series in (2) after a relatively
small amount of terms to diminish numerical instabilities
because of the amplifying factors ξ2

p and η2
q . The detour around

the analytical solution avoids numerical differentiation [13].
The additional computation work may adversely influence
the accuracy. Nevertheless, the convergence order for dBx

dx
remains the same as for the original FE solution for Az .

IV. VALIDATION, APPLICATION AND CONCLUSIONS

The improved post-processing technique is validated for
the two-wire configuration for which a comparison with an
analytical formula is possible. It is obvious from Fig. 2b that
the local post-processing technique improves the smoothness
of the field gradient substantially. In Fig. 3, the convergence
of the discretisation error is compared. The field gradient
obtained by standard post-processing converges with an order
between O(1) and O(h), whereas the improved technique
attains the convergence order O(h2), which is same order as
for the magnetic vector potential and predicted by theory.

The improved technique is applied to Rabi-type Stern-
Gerlach magnets (Fig. 1). The FE solutions are obtained
by FEMM [14]. The post-processing is based on the above
discussed techniques. The increased accuracy and reliability
allows to embed the FE simulation in parameter loops and
optimisation steps used during the magnet design. General-
isations to the 3D case, local post-processing regions with
other shapes and configurations with particular symmetries are
straightforward.
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