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Abstract—This study concerns boundary element methods
applied to electromagnetic testing, for a wide range of frequencies
and conductivities. The eddy currents approximation cannot
handle all configurations, while the common Maxwell formulation
suffers from numerical instabilities at low frequency or in
presence of highly contrasted media. We draw on studies that
overcome these problems for dielectric configurations to treat
conductive bodies, and show how to link them to eddy current
formulations under suitable assumptions. This is intended as a
first step towards a generic formulation that can be modified in
each sub-domain according to the corresponding medium.

Index Terms—Eddy currents, low frequency, Maxwell equa-
tions, surface integral equations.

I. Introduction
This study is motivated by the need to efficiently simu-

late complex configurations of electromagnetic non-destructive
testing (ENDT). Complexity may lie in the geometry and also
in the cohabitation of different models: an eddy current model
(EC) in conductive parts, a magneto-static model in non-
conductive permeable parts (e.g. ferrite cores) and Maxwell
equations in parts where the displacement current cannot be
neglected [1, Ch. 8] or in weakly conductive parts tested at
higher frequencies (e.g. composite media). Here we restrict
the study to isotropic and piecewise homogeneous linear
media. The boundary element method (BEM) allows intuitive
domain decomposition. Moreover, the significant reduction of
unknowns compared to domain discretization methods permits
the use of a direct solver for most of our configurations.

Due to the difficulty in developing a stable BEM formulation
for the wide range of frequencies and physical parameters,
practical computation is usually based on a specific BEM
formulation for each model. Indeed, the common Maxwell
formulation (PMCHWT with RWG or Rooftop basis func-
tions) suffers from numerical noise at low frequency or in
presence of highly contrasted media. Hence, eddy current
formulations [2], [3] are preferred for highly conductive bodies
at low frequencies. They are generally considered as accurate
for near field computations, but require the introduction of
additional unknowns (n · H and possibly n · E, in addition
to J = n × H and M = E × n). Besides, eddy current
approximations are valid only for low frequencies.

II. Low-frequency or high-contrast reformulations
The PMCHWT system is given by

Z · X = Y (1)

and, more explicitly, by ZJJ
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where subscripts 1 and 0 refer to internal and external con-
tributions (respectively related to a bounded body Ω and the
surrounding air filling the complementary domain R3 \ Ω).
The singularity of the double layer potentials ZJM

0,1 ,Z
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0,1 give

rise to twisted identity operators which cancel by summing
internal and external contributions. Each single-layer potential
ZJJ

0,1,Z
MM
0,1 is the sum of a vector potential and a scalar

potential, which respectively behave like O(ω) and O(ω−1)
in the low-frequency limit. The vector potential is thus in the
numerical noise of the scalar potential at low frequencies. A
popular way to overcome this low-frequency breakdown is
to separate the two potentials through an Helmholtz decom-
position (loop-tree basis functions) in (1) and to rescale the
resulting system. The latter then has the form

Z̃ · X̃ = Ỹ (2)

with

Z̃ := N1·(P·Z·P∗)·N2, X̃ := N−1
2 ·((P

∗)−1·X), Ỹ := N1·(P·Y)

where P effects the change in basis functions (loop-tree). In
partitioned form, system (2) has the form
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where subscripts L and T refer to loop and tree functions.
The potentials Zab

LL,Z
ab
LT ,Z

ab
T L involve only the original vector

potentials, as the scalar potentials vanish when applied to, or
tested with, loop basis functions. The diagonal weighting ma-
trices N1,2, proposed in [4], perform a normalization based on
the asymptotic expansion of the Green function for dielectric
bodies (real wave number). Although a similar normalization
could conceivably be defined for conductors, it would not
be effective for the cases of present interest involving high
contrasts between media 1 and 0. As an additional observation,
the EC formulation introduced in [5] is retrieved from (1) by
a procedure similar to that outlined above, namely neglecting
the displacement current everywhere, applying the Helmholtz
decomposition and suppressing the tree terms of the electric
current density JT .



The above formulation does not address the difficulties
caused by high contrasts. A popular approach for overcoming
the large scaling due to high dielectric contrast consists in
introducing suitable weighting factors to governing integral
equations in both subdomains prior to combining them. This
results in the new system

Ẑ · X = Ŷ (3)

with

ẐJ·
0,1 = α0,1ZJ·

0,1, ẐM·
0,1 = β0,1ZM·

0,1,

ŶJ = α0YJ , ŶM = β0YM ,

where suitable values of coefficients α0,1, β0,1 are given in [6].
The twisted identity operators arising in the double layer
potentials no longer cancel. The corresponding matrix is not
diagonally dominant, which makes the set of RWG basis func-
tions unsuitable as test functions. An alternative [6] consists in
testing equations (3) with n×RWG basis functions. Recently,
a variant has been proposed for highly conductive media and
its association with Helmholtz decomposition seems to yield
accurate results for far field computations at low frequencies
[7]. Besides, a classical EC formulation can be retrieved by
choosing α0 = β1 = 1 and α1 = β0 = 0, adding a scalar
equation and neglecting the displacement current.

III. Numerical assessment

First, the bistatic radar cross section (RCS) of a dielectric
sphere (r = 0.5m, εr = 5.0, f = 10Hz) placed in the free space
and illuminated by a plane wave [4] has been computed to
validate decomposed (2) (LTN) and weighted (3) formulations
for both RWG (W-RWG) and n×RWG (W-nxRWG) testing in
the dielectric case. Both modified formulations lead to accurate
results while the original PMCHWT formulation (1) suffers
from the low-frequency breakdown, see Fig. 1.
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Figure 1: Bistatic RCS of a dielectric sphere.

Next, a configuration representative of ENDT experiments,
hence involving a conductive body, is considered. Table I
shows the variation of impedance of a coil (rint = 3mm,

rext = 3.75mm, h = 2mm, I = 10−3A, 328 turns, f = 100Hz)
placed 0.3mm above a conductive plate (σ = 100MS/m)
large enough to neglect edge effects. Accurate results have
been obtained for loop-tree decomposition, with normalization
(LTN) or disregarding JT (LLT), while PMCHWT suffers
from low-frequency breakdown. However we also observed
that similar configurations may exhibit instabilities, as the
low-frequency and high-contrast aspects are not yet properly
handled.

Table I: Variation of impedance ∆Z = Z1 − Z0.

Reference 0.01995 − 0.0068657i
PMCHWT 0.017514 + 0.064636i
LTN 0.019911 − 0.0068061i
LLT 0.019911 − 0.0068061i

IV. Current investigation

To address these shortcomings, a perturbative approach is
currently investigated, whereby the perturbation of a perfect
electrical conductor (PEC) is considered. The PEC problem
only involves the unknown J (or JL under certain assump-
tions). Moreover, the resulting problem is expected no to
suffer from scaling imbalance caused by high contrast, and to
allow more accurate computation of internal fields in highly
conductive bodies (like [8] for magnetostatics). This approach
and preliminary results will be presented at the conference.

Our long-term objective is to establish a generic Maxwell
formulation that can be modified in each sub-domain accord-
ing to the characteristics of the corresponding medium. Such
formulation is required to compute accurately the near field,
even in highly conductive or permeable media, while keeping
problem sizes reasonable.
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