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Abstract—This paper deals with the global sensitivity analysis
of magnetoelectric devices model for magnetic field sensing. The
magnetoelectric sensor response is represented by a 2D finite
element model. Several material parameters of the model are
assumed to be uncertain. A non intrusive spectral projection
method is used to quantify the variability of the model outputs.
Using the Sobol indices, the most influential parameters on the
magnetoelectric sensor sensitivity are identified.

I. I NTRODUCTION

Magnetic field sensors based on extrinsic magnetoelectric
(ME) effect detect static magnetic field by measuring a har-
monic electric voltage [1]. Magnetic field sensors consist of
magnetostrictive-piezoelectric multilayers. Piezoelectric mate-
rials properties are provided by manufacturers with reasonable
accuracy. However, the randomness on magnetostrictive mate-
rials properties can arise from manufacturing process deviation
or lack of quality controls. The main properties of magne-
tostrictive materials are the permeability, the magnetostrictive
coefficient and the Lamé coefficients related respectively to
magnetic, magneto-elastic and elastic properties. These uncer-
tain parameters are modeled as random variables. Previous
papers have described the finite element model of such sen-
sor [2] [3] without taking into account the uncertainties in
the material properties. In this communication, we propose
a stochastic model of magnetoelectric sensors with uncertain
material parameters. In order to solve stochastic problem,the
Non Intrusive Spectral Projection (NISP) method is employed.
This method is compared with the Monte Carlo Simulation
Method (MCSM). Finally the Sobol indices are calculated in
order to determine the most influential parameters.

II. ME SENSOR FINITE ELEMENT MODEL

The extrinsic ME effect results from the combination of
magnetostrictive and piezoelectric effects. Previous papers
have shown that the performance of the device is greatly
improved under dynamic excitation [1]. Indeed, the ME coef-
ficient takes advantage of the superimposition of a small har-
monic magnetic fieldhac at mechanical resonance frequencies
of sensor and a static magnetic fieldHdc. Higher sensitivity
of ME sensor has been obtained due to the non linearity
of the magnetostrictive behavior. The constitutive laws of
piezoelectric are assumed to be linear. The magnetostrictive
constitutive laws are non linear. For the magnetostrictive
material, the total strainS is divided into the elastic strain
Se and the magnetostriction strainSµ, S = Se + Sµ. Then
the magnetostrictive strain can be written as a function of
magnetostrictive coupling coefficientβ, magnetic inductionB

and magnetizationM:
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The static constitutive laws are given by [2]:
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with tij the stress,tµij the magnetostrictive stress,ν the reluc-
tivity of material. The ME deterministic finite element model
consists of two subprograms. In the first subprogram, for each
finite element, magnetizationMe and magnetic inductionBe

are calculated, depending on the imposed magnetic fieldHdc.
Using these values, we can estimate the parameters of magne-
tostrictive linearized constitutive laws given in equation (3):
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where c̃ms is the stiffness tensor as a function of Lamé
coefficientsµ∗ and λ∗. The coupling matrixq̃ms is linked
directly to µ∗, β, Be and Me. The equivalent reluctivity
ν̃ms is calculated as a function of the permeabilityµ, Be

and Me, and the initial mechanical conditions. We note
X̃(ã, b̃) the small variation ofX around a polarization point
X0(a0, b0). Imposing a harmonic magnetic fieldhac at a
resonance frequency of ME sensor, the second subprogram,
using the constitutive law (3), calculates the harmonic electric
voltagevac. The electric voltagevac is then linked to the static
magnetic fieldHdc.

III. U NCERTAINTY QUANTIFICATION

Let consider a functionY (u(θ)) where u(θ) is a vector
of M independent uniformly distributed random variables in
the interval [−1, 1] with a finite variance. The first method
to study the functionY (u(θ)) consists in using the MCSM.
This method is very simple and robust but can be very time
consuming. Another method consists in using a stochastic
spectral approach. TheY (u(θ)) can be expanded using a
Polynomial Chaos Expansion:

Y (u(θ) =

∞∑

i=0

yiLi(u(θ)) (4)

with yi the real coefficients andLi(u(θ)) the multivariate
polynomials generated from product of monovariate Legendre
polynomials. Since the multivariate polynomialsLi(u(θ)) are
orthogonal, the coefficientyi is given by:

yi =
E(Y (u(θ)Li(u(θ)))

E(Li(u(θ)2))
(5)
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with E(X(θ)) the expectation of random variableX(θ). The
NISP method enables to approximateY (u(θ)) by truncat-
ing (4) and by calculatingyi using the Gauss quadrature
scheme [5].
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with uj andωj the Gauss points and their associated weights,
N the number of Gauss points. From the truncated expan-
sion (4), which is equivalent to a stochastic surrogate model,
statistical parameters such as the mean and the standard
deviation can be easily extracted. To study the influence of the
parametersu(θ) onY (u(θ)), Sobol proposed indices based on
the decomposition of the variance ofY (u(θ)) in the form [4]:

var(Y ) =

M∑

i=1

Di +
∑

1≤i<j≤M

Dij + . . . + D1...M (7)

We denote byα = (α1, . . . , αK) a K-tuple (K ≤ M)
such that (α1 < . . . < αK) and αi ∈ [1, M ]. Dα is
the fraction of variance due to the interaction of the inputs
v = (uα1

, . . . , uαK
). The Sobol indexSα is defined by:

Sα =
Dα

var(Y (u(θ)))
.

The Sobol indices can be calculated using the MCSM or from
the approximation (4) ofY (u(θ)). The sum of the Sobol
indices is equal to one and they are always positive. The first
order Sobol indicesSi enable to evaluate the influence of the
input ui(θ). The higherSi, the more influentui(θ).

IV. RESULTS AND CONCLUSION

The ME sensor is a trilayer structure presented in Fig 1

P

µ ε

B
dc

NS

h
ac

µ
x

y

z
0

Magnetostrictive layers PZT

µ⋆ λ⋆β

v
ac

Fig. 1. Magnetoelectric sensor

The magnitude of the voltagevac obtained between the elec-
trodes of the piezoelectric layer depends on the DC magnetic
flux densityBdc. The permeability (µ), the magnetostrictive
coupling coefficient (β) and Lamé coefficients (µ∗ and λ∗)
are assumed to be independent and uniformly distributed. The
parameter variations have been assumed to be of 20% onβ

and 5% on the other material parameters (µ, µ∗, λ∗). Tab. 1
gives the meanm and the standard deviation valueσ for the
considered random variables.

µ β µ∗ λ∗

m 100 2.40E-5 3.85E+10 5.77E+10
σ 8.33 0.76E-6 1.23E+9 2.76E+8

TABLE 1
VALUE AND STANDARD DEVIATION OF RANDOM VARIABLES

In Fig. 2, the harmonic electric voltagevac is plotted versus
the magnetic flux densityBdc. The blue points correspond to

the mean of the electric voltage obtained by using MCSM.
The red points, corresponding to the mean calculated using
the NISP method, are in 95% confidence interval of MCSM.
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Fig. 2. Electric voltage versus magnetic flux density obtained by MCSM
and NISP

We observe that the results obtained by the two different
approaches are very close. Nevertheless, the computational
time required for MCSM is about 4 times more than NISP
method. Using NISP method, we can now estimate the first-
order Sobol indices:S1, S2, S3, S4 corresponding respectively
to µ, β, µ∗ andλ∗. Fig. 3 plots the first-order Sobol indices
versus different magnetic flux densitiesBdc.
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Fig. 3. First-order Sobol indices versus magnetic flux density

In Fig. 3, we can see thatS2 and S3 are greater thanS1

andS4. It means that the magnetostrictive coefficientβ and the
Lamé coefficientµ∗ have a significant impact on the electric
voltagevac. The permeabilityµ and the Lamé coefficientλ∗

have almost no influence on the electric voltagevac. The
Sobol indices are nearly constant and do not depend onBdc.
The sum of the first-order Sobol indices is about0.99 for
all magnetic flux densities, the interaction effect of the inputs
can be ignored. As a first conclusion, in order to limit the
dispersion of the ME sensor characteristics, the variability of
β andµ∗ should be controlled during the fabrication process.
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