
Abstract—Robust design has gained much attention in product 
design because it can find the best design solution by minimizing 
the variance of response due to the variances of the variables 
which are impossible to control. However, since previous robust 
design techniques were inaccurate, they are hard to apply to 
product design with nonlinear properties such as electromagnetic 
devices. Thus, in this paper, statistical moment-based robust 
design optimization is proposed to resolve the difficulty. The 
proposed method can search for a robust optimum design more 
accurately as well as more efficiently since this calculates mean 
and deviation of the system directly from multiplicative 
decomposition method without any assumptions. Electromagnetic 
device is used to demonstrate its feasibility. 

Index Terms—Design optimization, Magnetic devices, Moment 
methods, Robustness, Uncertainty. 

I. INTRODUCTION 
Deterministic optimization has been widely applied to 

engineering design. However, deterministic approaches do not 
consider the impact of unavoidable uncertainties associated 
with design parameters and design variables in any 
engineering system. Hence deterministic optimal solutions may 
be sensitive with the presence of uncertainty. Robust design 
optimization is one of the advanced techniques that can 
improve product quality to find the non-sensitive solution, i.e. 
robust solution, without eliminating the causes. Despite this 
benefit of robust design, it faces challenging issues of 
inefficiency and inaccuracy.  

Many methods have been developed for modeling of 
robust design problems [1]. Taguchi method, proposed by 
Taguchi, has been widely used in robust design because of 
easy implementation. However, the method cannot provide 
design solutions but only the direction to the optimum solution. 
Also it is inadequate to implement nonlinear system such as 
electromagnetics devices due to inaccuracy. To solve this 
problem, the first-order Taylor expansion has been developed 
though efficient but inaccurate. Monte Carlo simulation is 
another choice, it is accurate but inefficient.  

In this paper, statistical moment-based robust design 
optimization is proposed to calculate the mean and variance 
(or standard deviation) of the objective and constraint 
functions (response variables). The proposed method can 
search for a robust optimum design more accurately as well as 
more efficiently since this calculates mean and deviation of the 
system directly from multiplicative decomposition method 
(MDM) based on metamodel without any assumptions [2]. 
Electromagnetic example (TEAM Workshop Problem 22) is 
used to demonstrate the effectiveness of the proposed method. 
The results are compared with those from deterministic 

optimization, Taylor expansion method and Monte Carlo 
simulation in terms of accuracy and efficiency.  

II. STATISTICAL MOMENT-BASED ROBUST DESIGN 
As shown in Fig. 1, there is a distinct difference between 

the deterministic design and robust design. In deterministic 
design, point 1 is selected as the optimum solution, i.e the 
minimum value in design space. However, if variables have 
tolerance which is called variation of variables, the optimum 
point has potential to violate the constraint. Robust design, on 
the other hand, chooses the point 2 as the optimum solution 
that can obtain robust performance without change in tolerance 
range. Also it never violates the constraint. 

When variables have tolerance, the objective and the 
constraint functions inevitably have distribution due to 
tolerance. Generally in robust optimization, the objective and 
constraint functions are redefined as mean and deviation of 
original objective and constraint functions. Design formulation 
for robustness is represented as follows: 
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Where P  is the noise variables which are uncontrollable and 
distributed. The design variables represented by b are selected 
as design variables that can be controlled by the designer and 
have significant impacts on the problem characteristics. F and 
Gj are the functions redefined as mean and deviation of 
original objective and constraint functions respectively. wi is 
weighting factor between mean and variance and ** , ff sm  are 
normalized factors of mean and variance. 

 
Fig. 1. Concept of robust design and general optimum design  
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III. MULTIPLICATIVE DECOMPOSITION METHOD 
The statistical moments in Eq. 2 can be expressed in terms 

of the first two raw moments as follows: 

òW == )2,1(,)()( ldfYm l
l xxx X  (2) 

Fundamental idea behind MDM is to replace true response 
)(xY  with kriging metamodel, )(ˆ xY . Kriging, so-called design 

and analysis of computer experiment (DACE) model, is the 
interpolation model where the prediction coincides with the 
simulation response at sampled points exactly. If kriging 
metamodel is accurate enough to replace true function, the first 
raw moment can be expressed as 
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where km  and ks  are mean and standard deviation of k-th 
design variable. In Eq. 3, only correlation vector )(xr  needs to 
be explicitly integrated because the others become constant. It 
is important to note that integration of each PDF over the 
infinite region becomes one. Therefore, integral of i-th element 
of J  vector can be given as 
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where new variables ),,2,1)(2/(1 2 Dkkk L==¢ sq  are used for 
simplicity of equation.  

In Eq. 4, we can find out an important fact that D-
dimensional integral is decomposed into product of one-
dimensional integrals. Because the integral in each dimension 
can be explicitly calculated, it does not need to use a numerical 
integration scheme [2]. Thus, we can accurately obtain mean 
and variance of responses by using MDM. 

IV. TEAM WORKSHOP PROBLEM 22 
TEAM workshop problem 22 is classified as three- and 

eight-parameter problems [3]. In this paper, we consider the 
three design parameter problem. The objective function of the 
problem takes into account both the energy requirement (E 
should be as close as possible to 180 MJ) and the minimum 
stray field requirement. And the superconducting material 
should not violate the quench condition that links together the 
value of the current density and the maximum value of 
magnetic flux density. In this problem, because SMES device 
is a highly elaborate machine, it is required a high level of 
accuracy during manufacturing process. However, uncertainty 
of currents in two coils which is hard to control has influence 
on energy preservation [4]. Therefore, it is necessary to 
employ the robust design optimization for stable performance. 

Design variables, limits of those and uncertainties of currents 
in two coils are specified in Table I. 

TABLE I 
DESIGN VARIABLES AND ITS UNCERTAINTY 

Limits R1 

[m] 

R2 

[m] 
h1/2 
[m] 

h2/2 
[m] 

d1 

[m] 
d2 

[m] 

J1 

úû
ù
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é

2m
MA

 

J2 

úû
ù

êë
é

2m
MA

 
Lower 1.0 1.8 0.1 0.1 0.1 0.1 10 -10 
Upper 4.0 5.0 1.8 1.8 0.8 0.8 30 -30 

Deviation - - - - - - 0.1 0.1 

TABLE II 
MAIN SPECIFICATIONS AND REQUIREMENTS OF IPMSM 

 Deterministic 
optimum Robust optimum 

Design variable   
Mean of objective f   

Deviation of objective f   
Total F   

 
Fig. 2. Comparison of the PDF at initial design and optimum design using 

Monte Carlo simulation  

V. RESULT 
Electromagnetic analysis of TEAM problem 22 is 

performed by ANSYS 12.0, FE program. Latin hypercube 
sampling technique (50 pre-sampled points) is used as each 
iteration sample set. Sequential optimization is performed 
gradient-based algorithm in MATLAB. Finally, we can find 
robust optimum at 14th iteration which satisfies constraints. 
Comparison between robust and deterministic optimum is 
presented as a histogram in Fig. 2. 

VI. CONCLUSION 
In this paper, we formulate robust problem of SMES 

system and it is able to evaluate robustness of the system due 
to uncertainty of currents in two coils. From optimization 
result, we obtain the robust optimum solution that improves 
both the performance and robustness of SMES devices. 
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