
 

Abstract—This paper presents an application of a machine 

learning technique to enhance a multi-objective genetic algorithm 

to estimate fitness function behaviors from a set of experiments 

made in laboratory to analyze ultra-wideband antennas. These 

experiments are stored in a web repository server that represents 

the knowledge of the antenna behavior using XML information. 

The algorithm is also self-organizing since it is a client application 

that always learns from the repository information before it 

defines its fitness function. The results were compared with the 

ones obtained with a real prototype antenna built from the 

optimal values obtained after the optimization. The final 

comparison has shown a promising gain for the designed antenna 

in the analyzed frequencies. 

Index Terms—Ultra-wideband antennas, Genetic algorithms, 

Optimization methods, Microstrip antennas. 

I. INTRODUCTION 

The recent widespread of ultra-wideband (UWB) systems 

has aroused interest in the subject of UWB antenna design. 

This design task normally has several, possibly conflicting, 

objectives [1]. In terms of optimization, multiple objectives 

usually involve multiple fitness functions that have to be 

considered simultaneously to solve a specific problem. These 

diverse considerations has made UWB antenna design an 

interesting domain to computational intelligence methods. 

However, construction of microstrip antennas with these 

characteristics without loss of performance is still a challenge 

to current research. A typical UWB antenna consists of a thin 

metal layer of some geometry that acts as a radiator element, 

separated from its ground plane by a dielectric substrate layer.  

This work presents a client application for a UWB antenna 

knowledge repository. It is a multi-objective genetic algorithm 

based on a technique that adopts a machine learning process to 

estimate fitness function behaviors from the information stored 

in the repository server. It is an evolution of three previous 

works [3][4][5] that have been basically enhanced in three 

aspects. In the first one of these, it was used a larger data set of 

empirical data sets to drive a learning process necessary to 

optimize slit dimensions of the ground plane, in the second 

one, a web repository is implemented to store experiments for 

different XML representations for UWB antennas, and in the 

third one, a color visualization technique was applied to 

graphically track the throughout optimization process. 

II. MACHINE LEARNING AND GENETIC ALGORITHMS 

Machine Learning (ML) refers to the use of formal 

structures (machines) to make inference (learning). This 

includes the construction of models proposing mathematical 

expressions that encapsulate the mechanism by which a 

physical process gives rise to observations [2]. ML can be 

used in various contexts and applications. One of them is the 

Evolutionary Algorithms (EA). Algorithms in evolutionary 

computation typically produce databases of sufficient size to 

obtain knowledge and improvement of the algorithm itself, 

allowing the use of ML techniques such as: statistical methods, 

interpolation, artificial neural networks and others. 

 

III. METADATA REPOSITORIES 

Metadata is known as data about data. They describe concepts, 

including their attributes and even relationships to other 

metadata. Metadata are maintained in repositories. The 

Antenna repository is used to store all the parts and pieces of a 

typical UWB antenna, such as its geometry and to associate 

experiments for a specified antenna concerning to an 

optimization objective. Many metadata repositories now use 

semantic technologies, such as XML languages known as 

Resource Description Framework (RDF) and Web Ontology 

Language (OWL) to create full descriptions of components 

and their relationships. 

IV. IMPLEMENTATION AND RESULTS 

A classical Genetic Algorithm (GA) was modified in the 

initial population generation step and in the fitness calculation 

step to be enhanced by the ML technique. See Figure 1. 

A spline interpolation variant (ML Technique) was used 

for each objective considered and its combination inside a 

weighted aggregate function. Spline interpolation is a form of 

interpolation where the interpolant is a type of piecewise 

polynomial named spline. The special case used here is the 

bicubic interpolation, in which a bicubic spline “S” 

interpolates (xi,yj,zij) points and S(xi,yj) is equal to 

zij for all i=1,..,nx and j=1,..,ny. Each objective is associated 

with a different S(x,y), where x and y would be the antenna 

optimization parameters Ls and Ws (two antenna geometry 

dimensions). S1(Ls,Ws) is the interpolation for bandwidth, 

S2(Ls,Ws) is the interpolation for return loss and S3(Ls,Ws) is 

the interpolation for central frequency deviation. The 

compound aggregate objective function (AOF)   is:  

AOF(Ls,Ws) = w1.S1(Ls,Ws)+w2.S2(Ls,Ws)+w3.S3(Ls,Ws) 

Where, wi (for i=1,2 and 3) are the empirical weights and 

the other GA parameters consist of simultaneous binary 

genetic operations over a population consisting of individuals 
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with two binary parts (one for each optimization dimension) 

with elitism, mutation (5%) and crossover (90%) genetic 

operators. The prototype implemented was tested for different 

datasets considering a ring monopole microstrip antenna and a 

set of restrictions empirically defined (Table I). 

 
Fig. 1 - Evolutionary algorithm 

TABLE I 

OPTIMIZATION RESULTS FOR DIFFERENT DATA SET SIZES 

Datasets Ls (mm) Ws (mm) BW(GHz) RL (dB) CFD(Hz) 

72 1.89  4.02 9.27  - 25.21    0.35   

119 2.30 3.69   9.32 - 20.12  0.35   

170 4.18 1.49 9.36 -32.66 0.34 

 

These datasets contain a different number of experiments 

to demonstrate that, as the number grows, the prototype 

algorithm increases its perception on the behavior of the 

objectives and its joint behavior of the whole. For all the 

datasets, the restrictions have been met and the best results 

were obtained with the last set of experiments. The one with 

170 experiments and presents the best results for all the 

objectives considered: bandwidth (9.36), return loss (-32.66) 

and central frequency deviation (0.34).  

In Figure 2, the optimum values for Ls and Ws are shown 

graphically using a surface chart that associate different colors 

to different values of aggregated fitness function values. The 

aggregated fitness function value associated to the optimum 

values is 79.13 and it is indicated in Figure 3 by a black arrow 

and by the crossing point of two straight lines. Since new data 

is experimentally obtained over time to show the behavior of 

an antenna with respect to analyzed objectives, the shape of 

both graphs changes and may result in the choice of new 

optimum values for the slit dimensions considered. This aspect 

shows how the algorithm could learn (and adapt itself) to 

improve its perception as soon as new information is available 

in the repository in which the experiments are stored. 

It is interesting to note that Figure 2 also shows the pareto 

boarder in which the population individuals were defined. For 

a nontrivial multi-objective optimization problem, there does 

not exist a single solution that simultaneously optimizes each 

objective. In that case, the objective functions are said to be 

conflicting, and there exists a set of Pareto optimal solutions.  

 
Fig. 2 - Final optimal values for AOF function visual map 

A solution is said to be in Pareto border if none of the 

objective functions can be improved in value without 

impairment in some of the other objective values. Without 

additional preference information, all Pareto optimal solutions 

can be considered mathematically equally good. 

V. CONCLUSIONS 

An antenna for UWB operation was constructed and 

optimized by a repository-based genetic algorithm prototype 

improved by an interpolation ML technique. This ML 

technique enabled a dynamic estimation of an aggregated 

compound fitness function used in a prototype algorithm that 

made it possible to learn with a set of experiments stored in a 

web system repository. The final optimal values found allowed 

the construction of a prototype UWB antenna that presented a 

reasonable gain in the analyzed frequencies of 3.5, 6.0 and 9.5 

GHz. An important aspect to consider in this work is its 

potential for the development of new algorithms and strategies 

based in knowledge stored in the repository used, since the 

web service implemented here can be easily extended to 

enable new approaches to treat the experiment data sets 

already available in the repository. 
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