
Abstract—The paper presents equations which allow us to 
calculate directly flux densities and eddy current densities in 
electromagnetic fields. A new method of the notation of the 
magnetic and eddy current field components and the connections 
of these components with space division networks is presented in 
this paper. Special attention is paid to taking into account the 
relations which associate flux densities and field intensities in 
individual parts of a ferromagnetic material. 

Index Terms—Eddy currents, electromagnetic fields, 
electromagnetic modeling, magnetic flux density. 

I. INTRODUCTION 

The Maxwell equations are the basis of almost all methods 
of electromagnetic field calculations. Examples and 
advantages of the use of the Maxwell equations in the integral 
form are presented in [1] – [4]. The proposed method of the 
formulation of the 3D electromagnetic field equations is 
similar to the reluctance network method [4], [5]. However, 
reluctances are not used in the creation of the magnetic field 
network. The determination of the reluctance values of a 
nonlinear magnetic circuit is quite inconvenient, especially if 
the hysteresis phenomenon is taken into account.  

II.  DIVISION OF FIELD SPACES 

Field spaces are divided into elementary rectangular 
prism-shaped segments. The centres of segments are 
connected by branches. It is preferable to determine the so-
called tree as a system of branches connecting the centres of 
all segments and not creating any closed path. One flux 
density component Bm and two field intensity components Hmi 
and Hmo are associated with only one of the branches which 
does not belong to the tree. The components Hmi are directed 
to the centres of the segments and the components Hmo are 
directed outside the segments. The Bp, Hpi, Hpo components are 
associated with branches belonging to the tree. Four 
neighboring segments are shown in Fig. 1. 

III.  EQUATIONS OF MAGNETIC FIELD 

On the basis of the first Maxwell equation it is possible to 
formulate equations for independent meshes in the form 
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where Hk is a field intensity component, ak  denotes a distance 
between the centre of the segment and the centre of the 
segment face, J is the density of the current of an external 
circuit or the density of an eddy current, and sJ  denotes the 
area of the surface determined by a mesh. 

 
 

 
 
 
 
 
 
 
 

Fig.  1. Four neighboring segments of the magnetic field with 
a marked mesh; Jw37 denotes a component of eddy current densities 

All equations can be written as 

( ) exwJwtJtJpopopipimomomimi JJWJWSHAHAHAHA ++=+++  (2) 

where Hmi, Hmo, Hpi and Hpo are the column vectors of the Hmi, 
Hmo, Hpi, and Hpo components respectively, Ami, Amo, Api and 
Apo  are matrixes of the distances ak, SJ is the matrix of areas sJ, 
Jt and Jw are the column vectors and of the Jt, Jw components 
of eddy current densities, WJt and WJw are matrixes coupling 
individual meshes of the magnetic field network with 
appropriate Jt and Jw components of eddy current densities, Jex 
is the vector of densities of external currents. 

Using the Gauss law it is possible to write equations for 
the independent nodes of the network in the form 
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where Bk is a flux density component, ck denotes the area of 
the segment face which is penetrated by the magnetic flux 
with the component Bk, and ls is the number of the magnetic 
flux density components associated with the given node. 
The product ckBk represents a certain magnetic flux which 
flows into the segment or flows out of the segment. All 
equations in the form (3) can be written as follows 

exppmm ΦBCBC ====++++                              (4) 

where Bm, Bp are column vectors of the Bm, Bp components 
respectively, Cm, Cp are matrixes of the areas of segment faces. 
On the basis of (2) and (4) it is possible to formulate one 
equation in which the Bm column vector is unknown. 

IV.  EQUATIONS OF EDDY CURRENT FIELD  

The network of the eddy current space is created similarly 
as previously, but only one component of the eddy current 
density is assigned to each branch. These components have 
the t subscript if they are associated with branches not 
belonging to the tree, otherwise the components have the 
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w subscript. On the basis of the second Maxwell equation we 
can formulate equations for independent meshes in the form 
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where ρ is the resistivity of a ferromagnetic material, dk is the 
distance between the centres of segments, Jk denotes an eddy 
current density component, sB denotes the area of the surface 
determined by a mesh, and B is the flux density of the 
magnetic flux which penetrates the surface area sB. 
All equations in the form (5) can be written in matrix form 
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where Jt, Jw are column vectors of the Jt, Jw components 
respectively, Dt, Dw are matrixes of dk distances, SB denotes the 
matrix of areas sB , WBm and WBp. are the matrixes coupling the 
independent meshes of the eddy current network with the 
appropriate components Bm and Bp  of the flux densities. 

For each independent node of the eddy current network we 
can formulate equations which have the following form 
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where lk is the area of the segment face which is penetrated by 
the eddy current with the component Jk, and ls denotes the 
number of eddy currents flowing into the given segment. 
The product lk Jk represents a certain equivalent eddy current 
which flows into the segment or flows out of the segment. All 
equations in the form (7) can be written as follows 
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where Lt, Lw are matrixes of the areas of segment faces. 
On the basis of (6) and (8) it is possible to formulate one 
equation in which the Jt column vector is unknown. 

V. NONLINEAR MATERIALS 

In many cases some segments represent a nonlinear 
ferromagnetic material. Then, any field intensity component 
can be shown in the form 
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where  f(B) is a certain nonlinear function. 
If a field intensity component H refers to a linear magnetic 
medium then the parameter g is equal to the reluctivity of this 
medium and the parameter m is equal to zero. Otherwise the 
parameters g are equal to zero and the parameters m are equal 
to one if the segments represent a nonlinear material. For all 
segments the relations between components can be written in 
the matrix form, which for the Hmi components is as follows 

),( pmmimimmimi BBFΜBGH +=                (10) 

where the column vectors Fmi(Bm, Bp) include the nonlinear 
functions f(Bm, Bp), which describe the relations between 
components in the segments of a nonlinear material.  

The experimental verification was made for a 
ferromagnetic steel plate. A thin conductor was pulled through 

the centre of this material (Fig. 2). On the basis of the voltages 
of measurement coils the flux densities were calculated and 
compared with the calculated flux densities. 

  
 
 
 
 

 
 

Fig.  2. The cross-section of a steel plate 
with a current-carrying wire and measurement coils 

 
 
 
 
 
 
 
 
 
 
 

 

 
Fig.  3. Changes of flux densities; continuous line – the waveform determined 

on the basis of measured voltages, dashed line – the calculated waveform 

VI. CONCLUSIONS  

The presented method of the formulation of equations is a 
certain modification of the reluctance network method 
although reluctances are not used because it is quite difficult 
to determine them for non-linear materials. The proposed 
notation of the field components allows us to reduce the 
number of equations to the sum of the independent meshes of 
the magnetic and eddy current fields. By using these equations 
it is relatively easy to take into account nonlinearities of 
ferromagnetic material, especially the hysteresis phenomenon.  
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