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Abstract—A novel 3-D integral formulation for solving eddy Il. ConomoLoGY Basis

currents in thin conducting structures with complex topology _ :
is presented. As in discrete approaches field problem varides The well-posedness of eddy current problems is related to a

are cochains, dual to chains defined on a pair of interlockedell ~ProPer definition of the algebraic structure of solutioncspa
complexes. So the discretized problem can be cast in a cir¢dike ~ Which is related in turn to the topology of the computational
manner. The proposed method is formulated in terms of mesh domain. Topological bases for the integral formulationedev
currents O“ta triangu'a(tje?oS;szcilier‘moggﬂotromﬁgggﬁscoﬁl%“g% oped in the next section are described below.
requirements compare . : : : :
idga is to use hompology gene?ators of the triangulated surfze to Thin conducting structures can be apprc_)xu”_nated as equiva-
compute the additional cochains needed by mesh analysis. lent surfaces when the eddy current density is approximatel
Index Terms—Eddy currents, Topology, Electromagnetic uniform across the thickness, i.e. when the skin depth istgre
shielding, Computational geometry, Circuit analysis. than the shell thickness. L&t c R® be a closed surface, i.e.
compact and without boundary, representing the thin siract
and I'y its triangulation. LetK be the simplicial complex
Computing eddy currents in thin conducting structuraglated tol', andK its (barycentric) dual complex, constructed
embedded in unbounded air domains is computationally dg; joining the centroids oK. A k-chain is a formal sum of
manding when 3-D finite element formulations with V0|Umﬁ-simplices ofK, i.e.c = Yaoi, a € C. In the same way,
elements are used. In that case a huge amount of elemefial k-chainso” can be built orK. The boundary operatat
with bad aspect ratio is required for discretizing conc@ti from k-chains to k—1)—chains allows building the (simplicial)
regions. Moreover, meshing of air domains further increasghain complex oK, from which simplicial homology spaces
the number of degrees of freedom. Both of these aspects legdr: c) are obtained [9]. These are useful to characterize
to poor numerical performance and accuracy. surface topology with linear algebra for numerical compati
A viable solution is to use integral formulations which do  simplicial cohomology spacebi¥(I;C) are the complex
not require the discretization of the air region [1] Thiduwees vector spaces dual tHk(F, C) Representatives of h0m0|ogy
time needed for pre-processing, e.g. model setup and neshiflasses inHX(T"; C) are k-cochains, i.e. linear forms mapping
and, in turn, computing requirements during solution. Aot k-chains to complex numbers. Poincaré duality for a closed
advantage during post-processing is that fields are compuigiface states that(I'; C) is isomorphic toH1(I"; C) so that
from equivalent sources only in limited regions, insteadhef cohomology basis can be built from homology basis. From
whole computational domain as with finite element methodpe Rham'’s theorenti(I"; C) is also isomorphic to De Rham
Integral formulations based on the Cell Method (CM) haV&)homok)gy Spacé{éR(r‘), i.e. the quotient space of closed
been proposed for analyzing EM shielding problems at veryforms zX(I') modulo exack-forms B (I'). Therefore, any
low frequency [2][3]. Hybrid formulations based on CM ang.cochain can be expressed as linear map [ for some
BEM have been developed for analyzing quasi-magnetostatiform «. Viceversaw defines ak-cochain on its turn.
problems [4][5]. These formulations are not suitable to eom The eddy current density df (in the quasi magneto-static
pute models with complex topology, e.g. shells with holes qit) can be regarded as a closed 1-form, i.ew & O.
bulk domains with cavities. In [6], [7] and [8] surface inte§ Therefore,w is an element ozl (I and the corresponding
equation methods have been proposed for solving thin shedset is bl=w+ BcljR(l")- If [wi], i = 1...n, wheren is the
problems with multiply connected domains. Among these, thgst Betti number, is the (finite) basis cb‘ljR(l")—the coho-

numerical strategy shown in [6] is particularly advantageo mology basis—, thendf] = 1, ai[wi] for some complex
since unknowns are related to interior nodes and holes.  codficients o;. Equating cosets yields = wo + N aiw,

A 3D integral formulation for cpmputing eddy currents iNvherewp € BL(I). If T is of arbitrary topologyw cannot be
thin conducting structures of arbitrary topology—in peuti expressed simply as thefiirential of a stream functioh. By

lar multiply connected—is presented. With mesh currents gsting w, = df, the eddy current density becomes
problem unknowns as in Circuit Theory the number of degrees

n
of freedom for solving eddy currents is minimal with benefits w= df + Zaiwi (1)
in terms of computing requirements. =

|. INTRODUCTION



wherew is the angular frequency of magnetic field sources.
With (2) additional field problem unknowns, i.e. mesh cutsen
it, have been added in order to account for domains of arbitrary
topology. Additional constraints are thus required to datee
mesh currents, which are given again by Faraday’s law (4).
Constitutive equations map dual 1-cochains to 1-cochains.
These are constructed by approximating 1-forms with slatab
local basis functions. In the present work, div-conforming
piece-wise uniform basis functions, proposed in [6], aredus
to approximatev locally. The electrical and magnetic consti-
tutive relationships are = Ri anda = Li, wherea is the
array related to the magnetic vector potential 1-form, &d
Figure 1: Loopsy1, y» are associated to representatives of @d L are the resistance and inductance matrix, respectively.
vector basis (equivalence classes) of spldg€T ; C). Magnetic fluxes in (4) can be expressed as a function of
magnetic vector potentials ds= C a.
The relationship (2) can be rewritten in compact form as
Numerical procedures for finding cohomology generators= C[ i,,, wherein, = (ipit)" is the array of mesh currents.
of electric vector potential formulations in bulk domaireve Including additional constraints for topological meshreuts,
been proposed in [10][11]. It can be observed that, by cos) becomesC,e+ jwb = 0 andb = Cya. By inserting
bining De Rham and Poicaré isomorphisms, a correspondeegsctric and magnetic constitutive relations, the follogyi
between the homology and cohomology bases is establishigéar matrix system is finally obtained
and generatore; can be obtained. In this work the algorithm T ) )
proposed in [12] for building a shortest homology basis (ChZCm) im = ~jwbs ®)
has been used. Its basic advantage is to minimize genergiferez = R+ jwL is the impedance matrix, typical of mesh
supports and, thus, number of coupling terms in linear 8yste analysis. The array of currents can be computed after gplvin

mesh analysis. A thorough discussion of the proposed iategr
formulation and of numerical results are presented in tipepa

I1l. | NTEGRAL FORMULATION
According to the so-callediscrete approaches such as the

Cell Method, field problems can be formulated in terms of
1-cochains and dual 1-cochains. Let 6&K) the complex 1]
space of 1-cochains ol and C1(K) the complex space of
dual 1-cochains of. By taking vector bases of these spaces
and from (1), dual 1-cochaio+ féw can be expressed into!?
a discrete form with cd@&cient vectors and matrices, as
i=Cli,+QTi; 2)
wherei is the array of eddy currents on 1-simplices Kf [4]
related tow, i, the array of mesh currents related fipi; is
the array of topological mesh currents relateduwio(of size
n), C is the edge-to-cell incidence matrix addis the edge-
to-homology loop incidence matrix. Fig. 1 shows an example
of homology loops for a toru$: Each loop is associated to a®
representative of a basis vector (equivalence clagd) OF; C).  [7]
Because of @ = 0, the combinatorial expression (2) has to
identically fulfill the div-free condition at the algebraievel (8]

G'i=0 (3)
whereG is the node-to-edge incidence matrix. The kernel (ﬁ]

G is spanned by the columns of mesh incidence maifjx
which is built by assembling column-wise incidence masice

(3]
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