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Abstract—The classical Wilson–Wilson experiment in 1913
about the electromagnetic field in a rotating non-conducting
cylinder is studied, based on Finite Element analysis. Electric
and magnetic fields are coupled through motional terms in the
constitutive relations. This particular kind of coupling is usually
not considered in existing numerical models. Effects due to the
finite axial extension of the cylinder can be conveniently assessed
with the help of the Finite Element simulation. This should be
useful for the correct interpretation of the experimental data.
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I. Introduction

The classical Wilson–Wilson experiment [1] has re-gained
attention, both from the experimental [2] and conceptual point
of view [3]–[6], since there was still some controversy about
the agreement of the experiment with relativity. The exper-
iment consists of a magnetic nonconducting hollow rotating
cylinder which is immersed in the external magnetic field of a
solenoid, Fig. 1. According to the relativistic theory of moving
media [7] a potential difference occurs between the inner and
outer surfaces of the cylinder, which bear metallic coatings.

In general, motion might exhibit itself through (i) a time-
dependent geometry, (ii) motional terms in the interface con-
ditions [8], or (iii) the constitutive relations. In usual low-
frequency electromagnetic modeling, (iii) applies to Ohm’s
law, J = κ(E+v×B), whereJ is the electric current density,κ
the conductivity,E the electric field,v the velocity, andB the
magnetic flux density. Interestingly, the Wilson–Wilson experi-
ment cannot be described in terms of such a quasistatic model,
because there is no separation of inductive and capacitive
effects. Moreover, due to lack of bulk conductivity, Ohm’s law
is irrelevant, and the motion enters the constitutive relations of
the electromagnetic fields. This renders the situation interesting
from the modeling and simulation point of view. Numerical
simulations also allow for assessing effects due to finite axial
extension of the cylinder and imperfect external field.

II. Modeling

Away from the coil the system is described by time-
independent homogeneous Maxwell equations

curlH = 0 ,
divB = 0 ,

curlE = 0 ,
divD = 0 ,

(1)

whereH is the magnetic field andD the electric flux density. If
the considered domain is simply connected, we can introduce
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κ = 0
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Figure 1. The Wilson–Wilson experiment. A magnetic (µ > µ0) noncon-
ducting (κ = 0) hollow cylinder is immersed in the external magnetic field
B0 of a solenoid. It rotates at constant angular velocityω around its axis.
A potential differenceV occurs between the inner and outer surfaces of the
cylinder, which bear metallic coatings.

electric and magnetic scalar potentials byE = −gradϕ and
H = −gradψ, respectively.

The general form of the interface conditions at a moving
interface is (see Table 1 in [8])

n× [H] + (n · v)[ D] = k ,
n · [B] = 0 ,

n× [E] − (n · v)[B] = 0 ,
n · [ D] = σ ,

(2)

where [· ] denotes the jump in the direction of the unit normal
vector n, k is the surface current andσ the surface charge
density. In the Wilson–Wilson experiment, the geometry is
stationary, which amounts ton · v = 0 on the boundary of the
hollow cylinder. The interface conditions reduce to their usual
form. That is, the motion is neither ”felt” (i) through a time-
dependent geometry nor (ii) through the interface conditions.

The Minkowski relations established in 1910 are [7], [9]

D + 1/c2
0 v × H = ε(E + v × B) ,

B − 1/c2
0 v × E = µ(H − v × D) ,

(3)

where c0 = 1/
√
ε0µ0 is the velocity of light in empty

space,ε is the permittivity andµ the permeability. We are
using the constitutive relations in the formD = D(E,H, v),
B = B(E,H, v), in their low-velocity approximation

D = εE +
λ

c2
v × H + O( |v|

2

c2

)

,

B = µH − λ

c2
v × E + O( |v|

2

c2

)

,

(4)
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Figure 2. By exploiting the symmetry it is sufficient to consider one quarter
Ω2 of the hollow cylinder’s cross section. A rectangular computational domain
Ω1 ∪ Ω2 has been defined for Finite Element analysis, with the indicated
boundary conditions. (R,Z) = (ra, za) + A rb; ra = 18.65mm; za = 47.5mm;
rb = 10mm; zb = 0; A = 2.

where c = 1/
√
εµ is the velocity of light in media, and

λ = 1 − c2/c2
0 ≥ 0 is the dragging coefficient. The velocity

provides a coupling between the electric and the magnetic
fields. Loosely speaking, a moving electric dipole is also
perceived as a magnetic dipole, and vice versa.

From Maxwell’s equations, the potential ansatz and the
constitutive relations we obtain the strong formulation ofthe
problem

divMgrad

(

ϕ
ψ

)

=

(

0
0

)

, M =

(

ε λωr/c2

−λωr/c2 µ

)

. (5)

The computational domain and boundary conditions are in-
dicated in Fig. 2. The conditions onΓr and Γz are dictated
to us by symmetry. The solenoid is located outside the com-
putational domain and taken into account by the conditions
for ψ on ΓR (∂ψ/∂n = 0) and ΓZ (ψ = ψ0). For simplicity,
they are chosen in a way that in the absence of the rotating
cylinder there is a homogeneous magnetic field inz-direction.
The conditions forϕ on ΓR (ϕ = 0) and ΓZ (∂ϕ/∂n = 0)
correspond to a grounded shield with radiusR that extends to
infinity in z-direction.

Since the interface and the boundary are non-smooth, we
relax the regularity and seek the solution of the problem in
H1(Ω1∪Ω2), which corresponds to the weak formulation: Find
(ϕ, ψ) ∈ H1

0,R × (H1
ψ0,Z
∩ H1

0,z) such that

∫ 2π

0

∫

Ω1∪Ω2

Mgrad

(

ϕ
ψ

)

· grad

(

ϕ′

ψ′

)

dΩ rdϕ = 0 (6)

holds∀ (ϕ′, ψ′) ∈ H1
0,R × (H1

0,Z ∩ H1
0,z).

1

We can show continuity and ellipticity of the bilinear form
induced byM in the energy norm

‖(ϕ, ψ)‖2 :=
1
2

∫ 2π

0

∫

Ω1∪Ω2

(D · E + B · H) dΩ rdϕ ,

which yields existence and uniqueness by standard arguments.

1H1
x,y = H1

x,y(Ω1 ∪Ω2) denotes prescribed tracex on Γy.

Figure 3. Equipotentials of the electric scalar potentialϕ. The parameters are
chosen as follows:µ = 3µ0; ε = 6ε0; ω = 2π · 100s−1; mesh size h=1.7mm,
∼3.200 degrees of freedom.

III. Simulation

We conducted a Finite Element analysis of the weak for-
mulation, with triangular first order standard nodal elements,
compare Fig. 3. The floating potentials due to the metallic
coatings on the inner and outer surfaces of the cylinder have
been taken into account by a standard Lagrangian multiplier
technique. We obtainV/Vref � 0.928, whereV is the potential
difference, andVref is a reference potential difference which
occurred if the cylinder was conductive.

In the actual experiment, the dragging coefficient λ is
determined from the measured potential difference V [1],
[2]. Only for an infinite cylinder za → ∞ it holds that
V/Vref → λ � 0.944 [10].2 Modeling assumptions have to be
taken to deal with the finite axial extension of the cylinder.
In the full paper, we will explain how these assumptions can
be assessed quantitatively with the help of the Finite Element
model.
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