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Abstract—Numerical tools for the study of mixing of small
quantities of liquid using a rotating current density and a fixed
magnetic field are developed and analyzed in this paper.
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I. Introduction

In many biomedical applications very small volumes of
liquid, usually of the order of 1ml, have to be mixed in
order to obtain the desired effect (mixing or reaction). Species
transport by molecular diffusion is very slow and turbulent
agitation is not a viable solution since it leads to the breakup
of the long fragile molecules in the liquid. If the liquid is
slightly conductive, as is the case in many biological liquids,
the Lorentz body force can be used to propel the liquid
from one region to another. Such a device has already been
employed by [1] but there is room for improvement from an
electrical engineering point of view. Here we first describeand
evaluate a device with a rotating current density field similar
to the rotating magnetic field of electrical motors. The second
purpose is to develop the necessary numerical tools to study
the mixing process both qualitatively and quantitatively.

II. Device and short description of the models

Six electrodesn = 1, . . . , 6 are placed in the conducting
liquid’s tank at positionsR (cos (n π/6) ~kx + sin (n π/6) ~ky)
and their potentialsen are driven such that:

en = ℜ{E expj (ω t+n π/6)} (1)

whereE is the complex amplitude of the applied voltage and
ω is the pulsation (see Fig. 1). The resulting current density
in the conducting liquid is then approximatively uniform in
amplitude j0 and has a rotating direction

~j = j0 (cos (ω t) ~kx + sin (ω t) ~ky) (2)

This is the 2 pole rotating current density.
Simultaneously a magnet is placed just under the center of

the cylindrical tank; the magnetic fieldh0 just above it (region
D) is approximatively uniform. The Lorentz force density is
approximatively:

~f =
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µ0 h0 j0 (sin (ω t) ~kx − cos (ω t) ~ky) in D
~0 elsewhere

(3)

When the pulsationω is zero, the direction of the force
density is fixed and the generated fluid flow corresponds,
approximatively, to a dipolar stream function. A particle placed
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Figure 1: Geometry of the tank, the electrodes and the magnet.

anywhere describes a certain closed path and returns to its
initial position in a time 2π/Ω.

When the pulsationω does not vanish, with a steady-
state approximation where the change of fluid flow responds
instantaneously to the change of force density, the particle is
subject to a motion driven by two pulsationsω andΩ.

III. Numerical model

The above description does not take into account the details
of the multi-physics modelling, which are summarized in this
section.

Four fields are in presence : the current density, the magnetic
field due to the magnet (which produces the Lorentz force
density), the velocity field and the concentration of chemical
species (of positions of the particles).

The current density~j and the velocity field~v are numerically
computed on the same tetrahedral mesh as in the 3D geometry.
The magnetic field is computed by the Biot and Savart
equation with a Coulombian magnet description.

The electrical potential and P1 finite elements are used for
the current density, this does not lead to too many difficulties.
The magnetic field is needed outside of the poles of the
magnet where the Biot and Savart formula does not have
any singularity, then a numerical integration (the poles are
triangularly meshed and a Gauss-Legendre quadrature is used)
is suitable. The magnetic field is then computed on the center
of each tetrahedron and the Lorentz force is obtained as a
vector constant for each element (P0).

The Eulerian velocity~v and pressureP fields are calculated
by solving the Stokes equations since the inertial terms can
be neglected due to the low velocities. This Stokes problem
has a variational formulation where the velocity minimizesa
functional (the power corresponding to the viscous dissipation)
under the zero divergence constraint where pressure is the
Lagrange multiplier. It is a saddle point problem for which
the Uzawa algorithm is suitable [2]. The velocity~v is split



Figure 2: The electrical potential (left), the vertical component
of the magnetic field (middle), and the lines of force (right)
on the surfaceD∂ of the electrolyte.

Figure 3: On the surfaceD∂: Streamlines when the electrical
current density is vertical (left) and horizontal (right).

into its components (u, v,w) each being approximatedP2 on
the mesh, the pressureP being approximatedP1.

We restrict the analysis of advection to particles remaining
on the surface of the electrolyte; then the triangular 2D sub-
mesh of this surface is extracted and only the trace of the
velocity field ~v∂ = u ~kx + v ~ky is used. Due to the boundary
conditions on this free surface,w and its normal derivative are
zero, the 2D velocity field~v∂ is thus divergence free and can
be formulated as~v∂ = ~∇× (ψ ~kz) whereψ, the stream function,
is computed on the 2D-mesh with a P1 approximation.

A set of N particles, initially at the positionsxn ~kx + yn ~ky

n = 1 . . .N, have trajectoriesXn(t) ~kx + Yn(t) ~ky which are
solutions of

dXn

dt
= −∂yψ(t, Xn, Yn) ;

dYn

dt
= −∂xψ(t, Xn, Yn). (4)

This Hamiltonian system depends explicitly on time but with
a known law. One can then obtain an exact integration from
one edge of an element to the other one.

If the concentration is fixed as equal to unity inside a
moving region Dt and zero outside, one only requires to
consider the advection of its boundary∂Dt, the material
points composing such a boundary can be moved as particles
(Lagrangian tracking).

Freefem++ is used for the actual calculations ; it is effective
for most couplings and is open enough so that it is possible
to write scripts operating at the level of finite elements such
as the advection of particles.

IV. Results and Discussion

The electrical potential, the vertical component of the mag-
netic field and the lines of force are plotted on Fig. 2. At
a given instant of time, the electrical potential (Fig. 2 left)
shows that the electrical current density is almost straight

Figure 4: A circular blob of dye submitted to a force directed
first downwards and then upwards.

Figure 5: Blob of dye after (from left to right) 1, 2, and 5
periods with the rotating field and 2π/ω = 2/3 Tm.

in the region where the magnetic field is important (Fig.
2 middle). The Lorentz force density is represented by its
lines of force (Fig. 2 right) i.e. the iso-ξ whereξ minimizes
∫

D∂
(~j × ~b − ~∇ × (ξ s~kz))2 d~x2, they are drawn on the surfaceD∂ of

the liquid region.
The velocity onD∂ is represented by the stream lines (Fig.

3), for the two orientations (vertical and horizontal) of the
Lorentz force density.

In a first test, the advection of a blob of same radius as the
magnet (Fig. 4 left) and with only the vertical lines of force
is considered. Once its perimeter has increased to about 10
times its original value (Fig. 4, middle), the opposite lines of
force are applied and the initial blob is obtained with a little
fuzziness (Fig. 4, right) due to numerical diffusion, which can
be estimated. The difference between initial and final blobs is
4% root mean square and 20% maximum.

Finally the spiral shape of a blob of dye after 1, 2 and 10
periods 2π/ω when the rotating field is applied is shown in
Fig. 5. If Tm = 2π/Ω is the mean period of the closed path
of streamlines (Fig. 3) ; 2π/Ω if chosen such as 2/3 Tm. A
Comparison between blob of dyes obtained at the same time
but with different ratios betweenω andΩ is shown Fig. 6.
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Figure 6: Comparison of blobs of dye at the same time between
2 π/ω = 2/3 Tm (left), 1/3 Tm (middle) and 2/9 Tm (right).


