
 

Abstract—A computational electrohydrodynamic (EHD) model 

is presented for the modeling of 3D electrically-induced fluid 

motion and free surface morphology evolution during EHD 

patterning of nanostructures. The model entails a finite difference 

solution of the electric field equation with a leaky model to 

account for polymer behavior, the Navier-Stokes equations for 

electrically-driven flows and the phase field equation for the free 

surface deformation. These equations are fully coupled and 

represent a very large complex numerical system. Once 

discretized, the intensive computation is alleviated with the use of 

parallel computing algorithms. Computed results are presented 

that illustrate the transient development of 3D nanostructures as 

they form under an electric field. The model is a useful tool to 

explore optimal conditions for scalable manufacturing of large 

scale nanostructures using the EHD patterning processes. 

Index Terms— Nanopatterning, Electrostatic self-assembly, 

Nanofluidics, Numerical simulation, Polymer films. 

I. INTRODUCTION 

Patterned micro/nano structures have a wide range of 

applications in micro/nano optical and electronic devices [1,2] 

and other microelectromechanical systems [3]. Some of these 

structures may be made using the manufacturing processes 

assisted by the external fields such as the electric field [4] and 

the magnetic field [5]. One of such techniques that has 

attracted much attention is the electrohydrodynamic (EHD) 

patterning process, a schematic representation of which is 

illustrated in Fig. 1a. The process uses a pair of electrodes, one 

of which (often the upper one) is patterned. A liquid 

polymer/air (polymer/polymer) film is sandwiched in between 

the electrodes and structures are patterned in the film in 

accordance with the structured electrode, when an external 

electric field is applied. The final nanostructures are formed 

with thermally- or photo-induced curing of the patterned 

polymer. Fig. 1 (b) shows an example of the top electrode (i.e. 

template), patterned with periodic cubic protrusions. 

Templates with other patterned electrodes have also been used 

[4]. An advantage of this EHD process is perhaps the cost 

effectiveness and its potential for scalable nanomanufacturing 

of large scale nanostructures. Of crucial importance to the 

process development and nanostructure quality control are the 

electrically-induced liquid film morphology evolution and the 

associated fluid motion in the liquid layer.  

This paper presents a full 3D transient numerical model 

capable of describing the electrically-induced flow and free 

surface phenomena in the EHD process. The numerical model 

is developed based on the electrostatic approximation with a 

leaky dielectric behavior is prescribed for the liquid-air system, 

which is then coupled with the Navier-Stokes equations for the 

fluid motion and with a phase field description of free surface 

deformation. The phase field modeling of free surface 

evolution is a result of a coarse-grain average of atomic 

statistical behavior of the liquid-air interface and provides an 

almost ideal approach to describe the nanoscaled evolution of 

structures associated the EHD nano-patterning processes. 

Numerically, this physics-based phase field model of free 

surfaces belongs to the category of fixed grid method for 

moving boundary problems. The coupled electrohydrodynamic 

and phase field equations are solved using the finite difference 

technique enhanced with parallel computing algorithms. 

Mathematical formulations, numerical aspects and computed 

results obtained for the EHD nanopatterning process are given.  

 
Fig. 1. (a) Configuration for the EHD patterning and (b) the morphology of 

the template. 

II. MATHEMATICAL FORMULATION 

Referring to Fig. 1, the mathematical equations that govern 

the electric field and force distribution, the fluid motion and 

the free surface evolution are given below. 

A. Phase field equations 

In phase field the free energy density is assumed to be a 

function of phase parameter C, the form of energy f : [0, 1] → 

R is taken as 
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where Ω is a bounded domain in R
3, with a boundary ∂Ω, T 

the computing time section, and C is the phase parameter with 

the property that values of C=1 and C=0 correspond to two 

distinctive phases. γ is the coefficient of the surface tension, ξ 

a measure of interface thickness. 6 2   is a constant.  

The Cahn-Hilliard equation with convection is employed to 

describe the evolution of the phase field 
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where u  represents the fluid velocity, M is the phase field 

mobility and is considered as a constant in this study, Φ is the 

chemical potential which is defined /f C   .  
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B. Electric Field Equations 

For poorly conducting polymers, a leaky dielectric model 

gives a better description of electric behavior. By the leaky 

model, free and bound charges both exist in the system, and 

the conservation of charges can be expressed as, 
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where σ(C) denotes the electrical conductivity, E V   the 

electric strength, V the electric potential, and ρ
e
 the free charge 

density. This equation can be further simplified for case under 

consideration. As the time scale of charge relaxation 

0 rt    is much less than that of the flow tc = Lc/Uc (Lc, the 

length scale, Uc the characteristic velocity), Eq. (3) becomes 

   0C V                                       ΩT                     (4) 

With Eq. (4), the free charge is calculated by Poisson equation, 

namely 
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where ε0 is the permittivity of vacuum, and εr(C) is the 

dielectric constant.  

C. Fluid Flow Equations 

The flow field distribution is described by the governing 

equations of mass conservation and momentum equations,  

0u                                                      ΩT                   (6) 

    + =0ef f                                             ΩT                   (7) 

In the EHD system, the electric force and the surface 

tension force on the interface should be added. The modified 

Navier-Stokes equation for variable density and viscosity is 

employed here as the governing equation. In micro/nano scale, 

the Reynolds number is very low (Re<<1), the flow becomes 

creeping flow, the unsteady term and convective term can be 

ignored. In the above equations, ρ(C) is the density of fluid, p 

the pressure, μ the viscosity, δi,j identity matrix, Φ the chemical 

potential. Also, П is the stress tensor, and the electric force 

due to polarization charge and free charge, and surface tension 

force is defined below,  
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III. RESULTS AND DISCUSSION 

The above coupled electrohydrodynamic and phase field 

equations are solved using the finite difference method. The 

3D computing is numerical intensive and the parallel 

computing algorithm is employed to enhance the numerical 

performance. The numerical model itself is highly versatile, 

capable of handling any arbitrarily patterned electrodes and the 

associated complex liquid-air interface morphologies and fluid 

motion. As an example, the case shown in Fig. 1 is studied 

here. The characteristic length is chose as the distance of the 

two electrodes, which is d0 in Fig. 1(a). The properties of the 

polymer-air film (polymer to air) are taken as follows: 

λρ=1000, λε=3, λµ=1000, λσ=10
4
. The template is shown in Fig. 

1(b), with the periodic feature of cubic protrusion. The 

periodic length l0 is 200nm, and d0=100nm, Δd=50nm, the 

cross section of the protrusion is 100nm*100nm. We take  

 
Fig. 2. Numerical simulation for the EHD Patterning, the polymer/air 

interface is shown here. The corresponding dimensionless time for (a) to (e) 

are t*=0, t*=8, t*=12, t*=16, t*=20. 

 

advantage of the periodic character and compute only one 

feature area. The computational domain is l0×(d0+Δd)× l0. 

Special treatment is needed for the solid part on the template, 

the electric field is equi-potential and the flow is set to zero. 

The mesh is chose as 101x76x101. The featured patterning 

could be extended to multi-periodic after computation. 

Figure 2 shows the computational results of nanostructures 

formed. Initially, the polymer-air interface is flat. With an 

external field imposed, the interface starts to deform under the 

effect of electric force, showing the “pine” like structures (see 

Figs. 2(c) and (d)). The structure evolves until it grows in 

height to the template, as evident in Fig. 2(e). The top surface 

of the nanostructure eventually becomes “flat” as it has 

touched the template (i.e. upper electrode). In Figs. 2(d) and 

(e), four ridges on one patterned structure are observed, and 

each of them corresponds to one corner of the template. Fig. 

2(f) is the top view of Fig. 2(e), which illustrates that the 

structure conforms well with the template. Also as is seen in 

Fig. 3, the growing rate of the pattern height accelerates with 

time, which is attributed to the fact that the electric force is 

stronger as the polymer/air interface gets closer to the 

template. Then structure height eventually touches the upper 

electrode and becomes fixed by the geometry constraint.  

 
Fig. 3. The transient process of structure height v.s. dimensionless time  
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