
Abstract—Simulating eddy-current problems in time domain 
using the magnetic vector potential formulation leads to a non-
linear system of differential-algebraic equations. Typically a 
large number of degrees of freedom (DoF) are in domains with 
constant material, for example air or vacuum in exterior 
domains. In this work a new method is presented that reduces 
only the DoFs in these exterior domains by using the proper 
orthogonal decomposition (POD) method. The POD method 
involves a singular value decomposition (SVD) to capture the 
system dynamics and extract the essential dynamical behavior 
with a low number of DoFs. A simple transformer example is 
given to proof the concept.   

Index Terms—Model order reduction, eddy current problem, 
finite element method. 

I. INTRODUCTION 

Low frequency problems that exhibit inductive and 
resistive effects are typically modeled by the magneto-
quasistatic (MQS) approximation. The resulting eddy current 
problem is a non-linear parabolic partial differential equation 
with boundary and initial conditions. Although using finite 
elements (FE) with adaptive and unstructured meshes, the 
semi-discrete  problems still consist of a large number of 
degrees of freedom (DoFs). In particular, if very similar 
problems are solved repeatedly, e.g., in an optimization loop 
or to quantify uncertainties, a reduction of the DoFs is 
necessary. One way out is FE coupled to Boundary Elements 
[1]. Furthermore  model order reduction (MOR), e.g., the 
proper orthogonal decomposition (POD). Most MOR 
techniques involve a singular value decomposition (SVD) to 
capture the system dynamics and extract the essential 
dynamical behavior with few DoFs. This was successfully 
applied to (linear) problems in the time domain, e.g., electro- 
[1] and recently (non-linear) magneto-quasistatic [3].  

In this paper we propose a new approach that reduces only 
the linear system parts of the quasistatic system, e.g. the eddy 
current problem. This avoids the main difficulty of classical 
MOR techniques with non-linear problems: the assembly of 
the full system of equations in every Newton step. A similar 
approach for electro-quasistatic problems was shown to reduce 
the DoFs considerably [4]. 

II. MAGNETO-QUASISTATIC FINITE ELEMENT FORMULATION 

The application of Whitney finite elements [5] to the 
magneto-quasistatic initial-boundary value problem in 
magnetic vector potential formulation yields the semi-discrete 
problem 

 
Fig. 1 2D transformer geometry with conductive non-linear iron core. 
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where a  is the (line integrated) discrete magnetic vector 
potential, M  the singular conductivity matrix and ( )K a  is the 

non-linear curl-curl reluctance matrix that accounts for 
magnetic saturation effects.  

For simplicity we assume that only electrically conductive 
parts (  0) exhibit a non-linear magnetic saturation 
behavior. Sub-structuring the spatial domain according to the 
conductive and non-conductive subdomains corresponds to a 
coupled formulation that consists of a quasistatic and static 
problem [5] 
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where the non-conductive part has a constant reluctance, i.e., 

22K  is constant. Finally, time integration, e.g., by using the 

implicit Euler scheme, leads to a series of non-linear systems 
for each time step it . They are commonly solved by Newton’s 

method which yields discrete solutions ia .  

III. MODEL ORDER REDUCTION 

The POD is a method for building low-dimensional 
approximations of both linear and non-linear systems, [7]. It 
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extracts the dynamical behavior from observations of the 
system variables. The observations are assembled in a 
snapshot matrix 

1 = , ,  .N  X a a  (3) 
 

that consists of previous solutions that may stem from another 
but similar problem, e.g., from a linearized or frequency 
domain formulation.  

Applying the SVD to X  results in the rank-one 
decomposition of the snapshot-matrix 
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where U and VT are orthonormal matrices and the singular 
values i  are sorted in descending order. The columns of U 

contain the directions where the system dynamics occur and 
the singular values weight these directions. Approximating the 
dynamics means to choose the first r most weighted columns 
of U. This results in a reduced order basis 
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Applying this low order approximation only for the non-

conductive linear part of the system (2) yields the reduced 
order system 
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Thus the magnetostatic part of the coupled problem is 

calculated in reduced form. The reduced matrix 22
T
r rU K U  and 

the off-diagonal coupling matrices have to be assembled once 
before starting the time transient simulation. During this 
process only the contributions of the elements with non-linear 
material laws have to be assembled. 

IV. COMPUTATIONAL EXAMPLE 

The example showing the method in action is a standard 
2D transformer model shown in Fig. 1 which is 30 x 40 cm in 

size with 358 primary and 206 secondary copper strands [5]. 
The model is discretized with FEMM [8] using 7713 nodes of 
which 3363 are in the linear subdomain.  

To provide a proof of concept the assembly of the snapshot 
matrix was done by a full simulation. In the full paper the 
possibility of more efficient snapshot assembly 
implementation, e.g., time harmonic solutions and the usage of 
the full solution assembled snapshot matrix applied to material 
varied simulations will be discussed. The 60 first singular 
values from a full simulation are shown in Fig. 2. The linear 
subdomain projection was applied for 40, 30, 20 and 10 
singular values, which determines the reduced dimension of 
the subdomain. In Fig. 3 the maximal relative error of the flux 
magnitude at every time step shows that a reduction factor of 
more than 100 for the subdomain can be reached. A speedup 
and scaling exploration for models with more DoF will be 
discussed in the full paper.  
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Fig. 3 Max. relative error of flux magnitude in time steps. 
Fig. 2 Singular values with marking 10th, 20th, 30th and 40th .


