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Abstract—In this paper, a new finite element mortar approach
with moving non-matching overlapping grids is introduced.The
bidirectional transfer of information between the fixed and mov-
ing subdomains is realized for each new position of the moving
part. Two numerical examples are presented to support the
theory. The first, an electrostatic problem with known solution, to
state the optimality of the method. The second, an eddy current
nondestructive testing application, to underline the flexibility and
efficiency of the proposed approach.

Index Terms—Finite element methods, interface conditions,
Maxwell equations, nondestructive testing, overlapping meshes.

I. Introduction

The modelization in eddy current (EC) nondestructive test-
ing (NDT) aims at reproducing the interaction between a
sensor and a conductor in order to localize possible defects
in the latter. The finite element method (FEM) is frequently
used in this context as well suited to treat problems with
complex geometries while keeping a simplicity in the im-
plementation. However, in NDT, the modelization has to be
realized for different positions of the sensor, thus requiring a
global remeshing of the domain. In the last decades, different
techniques to take into account the movement of a sensor
without having to remesh the whole computational domain
[1]-[4] have been studied. The mortar element method [5]
(MEM), a variational non-conforming domain decomposition
approach, offers attractive advantages in terms of flexibility
and accuracy. In its original version for non-overlapping sub-
domains, the information is transferred through the skeleton
of the decomposition by means of a suitableL2-projection of
the field trace [6], [7]. Recently, a MEM with overlapping
subdomains but unidirectional information transfert fromthe
master subdomain to the slave one has been proposed [8]. This
variant of the MEM is now suitably modified to deal with
bidirectional information transfert between overlappingsub-
domains. The paper is organized as follows: the EC problem
is presented in its weak domain decomposition version. The
new overlapping non-matching grid MEM is then described.
The accuracy of this new approach is tested on an electrostatic
problem, for which the analytical solution is well-known. The
method is then applied to solve an EC NDT problem to show
its flexibility.

II. Magnetodynamic formulation

The time-harmonic EC equations in a domainΩ read:

curl H = J, curl E = −iωB, div B = 0 (1)

whereH, B, J andE denote the magnetic field, the magnetic
flux density, the current density and the electric field. The
constitutive lawsB = µH, J = J0 + σE, with the magnetic
permeability µ, the electric conductivityσ and the source
currentJ0 distributed inΩ as shown in Fig.1 left, are added
together with boundary conditions to close the system (1). In
this work, a 2D case is examined, whereB lies in thez = 0
plane. The magnetic vector potentialA defined byB = curl A
is thus perpendicular to thez = 0 plane andA is its only
unknownz-component.
Let us consider the domainΩ where an EC problem (1) is
solved. In a domain decomposition approach, we separate the
fixed and the moving subdomains inΩ. The moving part,ΩM,
contains the coil supportingJ0 with a layer of air, whereas
the fixed part,Ω\ΩM, includes some conducting and non-
conducting parts (Fig. 1 right). In term of scalar potentialA,
the problem (1) is reduced to solve magnetostatic or magne-
todynamic equations in each subdomain withA − AM = 0,
µ−1

M ∂nAM−µ
−1∂nA = 0 as interface conditions atΓ = ∂ΩM and

homogeneous Dirichlet conditions at∂Ω.

Figure 1: DomainΩ for an EC case (left). Domain decompo-
sition into a movingΩM and a fixedΩ\ΩM subdomain (right).

The associated variational problem reads:
Find (A, AM) ∈ H1

AM
(Ω\ΩM) × H1

A(ΩM) such as:∫
Ω\ΩM

iσωAA′ +
∫
Ω\ΩM

µ−1∇A.∇A′ = 0, ∀A′ ∈ H1
AM

(Ω\ΩM)∫
ΩM

µ−1∇AM.∇A′M =
∫

suppJ0

J0A′M ∀A′M ∈ H1
A(ΩM)

(2)



where H1
AM

(Ω\ΩM) = {A ∈ H1(Ω\ΩM), A = AM onΓ} and
H1

A(ΩM) = {AM ∈ H1(ΩM), AM = A onΓ}. According to the
Lax-Milgram theorem, there is a unique solution for (2).
The continuous case givesA|Γ = AM |Γ but the main difficulty
arises with the discrete case.

III. M ortar ElementMethod

Two triangulations are applied depending on the considered
subdomains. These discretizations are non matching grids and
completely independent in the overlapping region.
The exchange fromΩ to ΩM is realized on the interfaceΓ [8].
The information from moving to fixed subdomains using an
interface chosen as a boundary (calledγ) of the elements of
Ω overlapped byΓ such as:

CAM|Γ = DA (3)

EA|γ = HAM (4)

according to the mortar method. The coupling matrices are
described, on the edgese of the concerned interface, as:

C(i, j) =

∫
e∈Γ

ψ jψi, D(i, k) =

∫
e∈Γ

φkψi

E(i, j) =

∫
e∈γ

φ jφi, H(i, k) =

∫
e∈γ

ψkφi

where the functionsφi andψi are defined on the discretizations
of Ω andΩM, respectively. The matricesC andE can be easily
computed since both basis functions are defined with respect
to the same mesh. On the contrary,D andH concern discrete
functions living on different meshes. To solve this problem,
quadrature formulas are implemented.
In order to solve a single algebraic system, the conditions (3)-
(4) are imposed, on the global matrix, with the help of the
method of Lagrange Multipliers [9].

IV. Electrostatic case

In order to evaluate the accuracy of the method, a simple
problem is proposed. An uniformly charged cylinder is consid-
ered. The moving domain contains the volumic charges and
a box of air Fig.2.As the analytical solution is well-known,
numerical tests show the accuracy and the continuity of the
solution between the subdomains.
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Figure 2: Focus onΩM of the electric scalar potential and
convergence rates in the fixed domain.

V. NDT case

A 2D EC NDT case is proposed. The coil and a layer of air
are considered as the moving domainΩM as shown in Fig.3
(left). The computed flux density is given in Fig.3 (right).
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Figure 3: Focus on moving subdomain (left). Magnetic flux
density (right).

The values obtained on the two overlapping meshes are
compared to the Matlab’s PDE tool results on a single mesh.
The magnetic flux is calculated in the coil and the results show
a difference of 3%. Henceforth, it is possible to determine the
flux for different positions of the coil without remeshing the
global domain.

VI. Conclusion

The variant of the MEM presented in this paper has the
novelty to allow overlapping subdomains with bidirectional
exchanges. In the full paper, the calculation of the coupling
matrix is explained, the quadrature formula are detailed and
the final linear system is defined. Additional results will be
provided and the method efficiency discussed.
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