
Abstract—The dual formulations established on the dual 

unstructured meshes using the discrete geometric method for 

electrostatic field problems are presented. The formulations are 

both in terms of scalar potential. Compared to the traditional 

dual formulation in terms of vector potential, the proposed 

method is more efficient with reduced number of unknowns and 

computational complexity. The positive definiteness of the 

constitutive matrices requires the dual meshes satisfy the 

Voronoi-Delaunay condition. For the elements not satisfying this 

condition, a modification of the centre node is proposed. The 

complementary bounds of electrical energy are studied through a 

micro-electro-mechanicals-systems (MEMS) comb driver example. 

A comparison between the DGM and the finite element method 

(FEM) is performed.  

Index Terms—Computational electromagnetics, electrostatics, 

dual formulations, discrete geometric method. 

I. INTRODUCTION 

On the framework of differential geometry, various 

numerical methods such as the finite element method (FEM), 

the finite integral method (FIT) and the cell method (CM), can 

be unified with the geometrical description. They differ only 

by the Hodge discretization of constitutive laws. The analogy 

between the various methods has been addressed in [1]. The 

discrete geometric method (DGM) has become an attractive 

alternative in computational electromagnetics in the past 

decade [1]-[6].  

It is well known that the dual formulations have the 

advantage of providing complementary energy bounds [7]. 

One of the benefits is to get global quantities such as the 

impedances with better accuracy and reduced computational 

cost. In the case of electrostatic field using the FEM, the dual 

formulation works with the vector potential and uses the edge 

elements for the discretisation. It requires in addition, the 

generation of links between regions (cavities) that contain 

charges [8]. The complexity of the vector formulation prevents 

its wide exploration. The dual formulation in terms of vector 

potential has been explored recently using discrete geometric 

approach [9]. The computational complexity remains elevated. 

It has been pointed out in [6] that the dual formulation of 

electrostatic field can be built through the dual mesh using the 

scalar potential, but the study was limited to the orthogonal 

hexahedral mesh. As the majority of practical engineering 

applications requiring fine analysis uses unstructured meshes, 

we propose in this paper to extend the dual formulation on 

dual mesh to unstructured (tetrahedral) mesh. Compared to the 

vector potential formulation, the proposed method reduces the 

number of unknowns and the computational complexity.  

The discretisation of the Hodge operator, i.e. the 

computation of the constitutive matrix is carried out through 

the division of length and facet of respective mutually 

orthogonal primal and dual meshes [10], which results in a 

diagonal constitutive matrix. To have the constitutive matrix 

positive definite, the discrete grid should be constrained by 

Voronoi-Delaunay condition, i.e. the circumcenter of the 

tetrahedron should resides in the interior of the element. For 

the bad shaped elements that this condition is not satisfied, a 

modification of the centre node is proposed.  

II. DUAL FORMULATIONS ON DUAL MESHES  

For a typical electrostatic field problem, the primary and 

dual formulations in terms of scalar potential are readily 

derivable using DGM: 

Primal:  dppT vGMG  ,           (1) 

Dual:  pdTd vDMD  ,           (2) 

where G and D are incident matrices that map, respectively, 

the nodal degrees of freedom (DoF) to edge DoF and the facet 

DoF to volume DoF on the primary mesh Mp, while the 

transposes -D
T
 and -G

T
 are their counterparts on the dual mesh 

Md. 
pM and dM  represent the constitutive matrices which are 

discrete versions of Hodge operator, p  and d  are volume 

charges, and pv  and dv  are unknown nodal potential vectors. 

The superscripts p and d indicate that they belong, respectively, 

to the primal mesh Mp or the dual mesh Md. Equations (1) and 

(2) are to be solved subject to the Dirichlet boundary condition. 

The degrees of freedom (DoF) of the primal formulation (1) is 

the number of nodes of Mp excluding Dirichlet nodes and the 

DoF of the dual formulation (2) is the number of elements of 

Mp, i.e. the number of nodes of the dual mesh Md. Compared 

to the dual formulation in terms of vector potential, the 

formulation (2) has fewer unknowns and in addition, there is 

no need to build the links between the charge regions (or the 

electrodes).  

III. COMPUTATION OF CONSTITUTIVE MATRICES  

Using the DGM, pM  and dM  are diagonal matrices built 

respectively on the edges of the primal mesh Mp and on the 

edges of the dual mesh Md. Their dimensions are respectively, 

the number of edges and the number of facets of the mesh Mp.  

The elements of pM  are capacitances defined on each edge of 

Mp. Its ith element is the capacitance on the edge i, given by  
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where e  is the permittivity of the element e, Ei is the set of n 

elements containing the edge i of the primal mesh Mp, 
p
iL  and 

d
eiS  are length and surface determined by the circumcenter of 

the element as shown in Fig.1 (a). It can be noted that 
p
iim represents n elemental capacitances connected in parallel 

around the edge i. 

On the other hand, the elements of dM  represent 

capacitances defined on each edge of Md , i.e. on each facet of 

Mp. On the facet j, we have  
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where Ej is the set of 2 elements sharing the facet j of the mesh 

Mp, 
d
ejL  and p

jS  are length and surface determined by the 

circumcenter as shown in Fig.1 (b). The element d
jjm is in 

fact the two elemental capacitances across the facet j in series. 
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Fig. 1. Elemental contribution to constitutive matrices: 

(a). For the computation of 
p
iim , (b). for the computation of 

d
iim  

The positive definiteness of matrices pM  and dM  requires 

that the circumceter of the tetrahedron dropped inside of the 

element (Voronoi-Delaunay mesh). However this is not all the 

case due to bad shaped elements constrained by the complicate 

structures. To avoid negative values of  p
iim  and d

iim , we 

propose to shift the centre point (the node of the dual mesh Md) 

for the bad chapped elements.  

IV. EXAMPLE OF VALIDATION 

To validate the dual DGM on unstructured mesh and to 

investigate energy bounds of both FEM and DGM dual 

formulations, we consider a MEMS comb driver and compute 

the capacitance between the two sets of comb fingers, as 

shown in Fig. 2. The two conductors are placed in the air and 

above an infinite ground plane. The computation domain is 

discretized by tetrahedral mesh. 

To compute the total and coupling capacitances, 1-volt 

voltage is applied on the conductor 1 and 0-volt voltage on the 

conductor 2 and the ground plane. The problem is solved with 

the DGM and the FEM using the same mesh. The capacitance 

values calculated with a tetrahedral mesh including 17171 

nodes and 98551 elements are listed in Table I. We observe 

that the results of the DGM are quite close to those of the FEM. 

The complementary energy bounds and the energy 

convergence along with the mesh refinement for both FEM 

and DGM will be reported in the full paper. 

 

Fig. 2. An electrostatic MEMS comb driver (the infinite ground plane and the 

air are set invisible). 

TABLE I 

CAPACITANCE RESULTS WITH DIFFERENT DUAL METHODS (unit: fF)  

Methods 
Number of 

unknowns 

Total 

capacitance 

Coupling 

capacitance 

FEM 

Primal 9185 5.133 3.861 

Dual 79015 4.459 3.245 

Average - 4.796 3.553 

DGM 

Primal 9185 5.182 3.875 

Dual 64066 4.464 3.252 

Average - 4.823 3.564 

V. CONCLUSION 

A dual DGM on unstructured mesh in terms of scalar 

potential in electrostatics is proposed. Compared to the vector 

potential formulation, the method provides the similar results 

but with reduced computational complexity. The 

complementary energy bounds are demonstrated as the case 

with the FEM, the study supports the idea in a step further that 

complementarity is related to the geometry discretization. 
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