
Abstract—Model Order Reduction Method like Proper 

Orthogonal Decomposition (POD) can be very efficient in the 

linear case but meet limitations in the non linear case. In this 

communication, the Discret Empirical Interpolation Method 

coupled with the POD method is presented. It is an interesting 

alternative to reduce large-scale system arising from the 

discretization of non linear magnetostatic problem coupled with 

electric circuit. 
 

Index Terms—Reduction Method, POD, DEIM. 

I. INTRODUCTION 

To describe the behavior of electrical machines coupled 

with an external electric circuit, the Finite Element Method 

associated with a time-stepping scheme is often used to solve 

numerically Maxwell’s equations coupled with the circuit 

equations. When a fine mesh and a small time step are used, 

the computation time of the large-scale system obtained from 

the discretization of the Non Linear Partial Differential 

Equations (NL-PDE) can be prohibitive. To tackle this issue, 

an alternative is to use model order reduction methods. In the 

literature, the Proper Orthogonal Decomposition (POD) has 

been widely used to solve a lot of problems in engineering [1]. 

This method consists in performing a projection onto a 

reduced basis of the space domain, the size of the system of 

equations to solve can be highly reduced. The Snapshot 

approach is often used to determine the discrete projection 

operator between the original basis (generating from the mesh) 

and reduced basis [2]. In computational electromagnetics, the 

POD method has been applied, for example, to study the 

behavior of a transformer with a non linear core [3] or to solve 

an electroquasistatic field problem [4]. In the case of a system 

with linear PDE, the POD approach can lead to a dramatic 

reduction of the computation time. In the non linear case, this 

method is not so efficient anymore due to the computation cost 

of the non linear term in the reduced system which requires the 

matrix assembling of the initial problem. To solve this 

problem, the Discret Empirical Interpolation Method (DEIM) 

method can be used with the POD approach [5]. This method 

consists in interpolating the non linear behaviour of the 

magnetic field on the whole studied domain from evaluations 

of the non linear behaviour law on a small number of degrees 

of freedom.  The computation time of the non linear term when 

applying the POD is then highly reduced.  

In this communication, the DEIM-POD approach is 

applied to solve a non linear magnetostatic problem coupled 

with an electric circuit using the vector potential formulation. 

First, the numerical model obtained from the formulation is 

presented. Secondly, the POD with Snapshot method and the 

DEIM are developed. Finally, an example is treated where the 

different non linear models obtained from the POD method 

and from the coupling of the POD method and DEIM are 

compared. The results obtained with the reduced model are 

also compared in terms of accuracy and time calculation with 

the original Finite Element Model. 

II. NON LINEAR MAGNETO-STATIC PROBLEM COUPLED WITH 

ELECTRIC CIRCUIT 

A magnetostatic problem can be solved using the vector 

potential A such that B(x,t)=curlA(x,t). To take into account 

the non linear behaviour of the ferromagnetic material, the 

fixed point technic can be used. In that case, the magnetic field 

H(x,t) can be expressed by H(x,t)=νfpB(x,t)+Hfp(B(x,t)) with 

νfp a constant and  Hfp(B(x,t)) a virtual magnetisation. Then, 

the equations to solve are 
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with N, v(t), i(t) and R the unit current density vector, the 

voltage, the current and the resistor associated with a stranded 

inductor. The equation (2) enables to take into account the 

coupling with the external circuit. Using a spatial semi-

discretisation of A(x,t) (in 2D, with the standard nodal 

elements), the system of ordinary differential equations to 

solve can be written:  
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with X(t) the vector of unknowns of size Nun such that (Xi(t))1≤i 

≤Ne =(Ai(t)) 1≤i ≤Ne with Ai(t) the value of A at the node i and 

XNun(t) = i(t). M and K are matrices and F(t) and Mfp(X(t)) 

vectors.  

III. MODEL ORDER REDUCTION WITH DEIM-POD 

A. Proper Orthogonal Decomposition 

In order to reduce the computation time required to solve 

the previous matrix system, the POD approach can be used [1]. 

The vector X(t) is approximated in a reduced basis by a vector 

Xr(t) of size Ns (Ns<<Num). To determine a discrete projection 

operator ΨΨΨΨ such that X(t) = ΨΨΨΨXr(t), the Snapshot approach is 

generally applied [2]. The system (3) is solved for the 

solutions (called Snapshots) calculated at the first Ns time 

steps. The Snapshot matrix Ms is defined by Ms=(X
j
)1≤j≤Ns. 
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with X
j
 the solution X(t) at the j

th
 time step. A way to express 

ΨΨΨΨ is to use the Singular Decomposition Value of Ms,  
 

Ms=VΣΣΣΣW
t
 (4) 

with VNun×Nun and WNs×Ns orthogonal matrices of eigenvectors 

and ΣΣΣΣNun×Ns the diagonal matrix of the eigenvalues values. The 

operator ΨΨΨΨ is equal to VΣΣΣΣ. The reduced system to solve can be 

deduced from (3) such as  
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B. DEIM with POD 

In the non linear case, the computational complexity of the 

vector fnl(t) = Mfp(ΨΨΨΨXr(t)) can be important (see (5)). In fact, it 

is necessary to evaluate the solution X(t) in the original basis 

by ΨΨΨΨXr(t) and to determine the vector Mfp(X(t)). To tackle this 

issue, an alternative is to apply the DEIM [5]. This approach 

proposes to approximate the nonlinear function fnl(t) by 

combining projections with interpolations. All terms of the 

vector fnl(t) don’t need to be evaluated anymore but only a 

small number of them. In 2D, the nodes, where the non linear 

function is evaluated, are called the DEIM points. We seek for 

approximating fnl(t) by the vector Uc(t) with U a orthogonal 

matrix defined by a Snapshot-POD approach in the same way 

as ΨΨΨΨ and c(t) the interpolation function vector. To determine 

the coefficients of c(t), Ndeim distinct rows from the over-

determined system are selected by applying a matrix P such as 

P
t
fnl(t)= P

t
Uc(t). The algorithm presented in [5] is used to 

determine the matrix P=(Ii)1≤i≤Ndeim with Ii the i-th column of 

the identity matrix INun×Nun.  fnl(t) can be approximated by 
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In this expression, the calculation of the term 

Mfp(P
t
ΨΨΨΨXr(t)) requires just the evaluation at the Ndeim nodes of 

the non linear function and not at all nodes as in (5). 

IV. APPLICATION 

A 2D magnetostatic example, made of a single phase 

transformer supplied with a 50 Hz sinusoidal voltage at no 

load, is studied. The non linear magnetic behavior of the core 

is considered. The 2D spatial mesh is made of 1330 nodes and 

2560 triangles. The Euler scheme is used to solve (3) and the 

time step is fixed to 1ms. Figure 2 presents the evolution of the 

current obtained from the original model (reference) and the 

POD and DEIM-POD approaches with 6 snapshots. The 

number of DEIM points is equal to the number of snapshots. 

We can observe that the POD model gives results closer to the 

reference than the DEIM-POD method. Nevertheless, in term 

of computation time, the DEIM-POD model is faster due to the 

evaluation of Mfp(ΨΨΨΨXr(t)) in (5). With the POD approach, the 

time computation is close to the one of the reference model. 

Table I presents the maximal error of the current obtained 

from the two reduced models and the ratio of the computation 

times with the reference model versus the number of 

snapshots. The DEIM-POD approach requires more snapshots 

to obtain a result very close to this one of the reference than 

the POD model. Nevertheless, as the computation time is 

dramatically reduced, the DEIM-POD approach appears as a 

very interesting alternative. Figure 3 presents the DEIM points 

for 10 snapshots. As expected, these points determined 

automatically by the DEIM are located in saturated area.  
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Fig. 1. Example of application 
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Fig. 2. Evolution of the current 

TABLE I 

COMPARISON BETWEEN POD AND DEIM-POD MODELS VERSUS 

THE NUMBER OF SNAPSHOTS 

Number of Snapshots 4 8 10 

Max error of current (%)– 

POD model 
10.87 0.036 0.026 

Max error of current (%) – 

DEIM-POD model 
14.48 2.6 0.06 

Time ratio (%)  0.6 2.18 3.67 
 

 
 

 
Fig. 3. DEIM points on the mesh 
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