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Abstract—Absorbing boundary conditions for waveguide ports
in time domain are important elements of transient approaches
to treat RF structures. A successful way to implement these
termination conditions is the decomposition of the transient fields
in the absorbing plane in terms of modal field patterns. The
absorbing condition is then accomplished by transferring the
wave impedances (or admittances) of the modes to time domain,
which leads to convolution operations involving Bessel functions
and integrals over Bessel functions. This article presentsa new al-
ternative approach: the convolution operations are approximated
by appropriate state space models whose system responses can be
conveniently computed by standard integration schemes. These
schemes are indispensable for transient simulations anyhow.

Index Terms—Waveguide boundary condition, modal wave
absorption, time domain analysis, modal analysis.

I. Introduction

The investigation of closed RF structures with waveguide
ports in time domain is a standard task in Computational
Electromagnetics. Often, for this purpose boundary conditions
at the waveguide ports are required ensuring waves incident
on the ports from inside of the RF structure are not scattered
back into the structure. In the literature a large variety of
methods (see e.g. [1], [2], [3]) is discussed to tackle this
problem. This article presents a new approach to construct
multimodal waveguide port boundary termination conditions
for time domain computations employing state space models
(SSM). The presented method is based on the transform of
the well-known characteristic impedances of port modes in
frequency domain to time domain, as it is proposed in [4], [5].
However, in contrast to [4], [5] the presented modal absorbing
boundary condition (MABC) does not require to evaluate con-
volution integrals involving Bessel functions. Instead, the con-
volution operations are approximated by suitable state space
models, whose system responses are conveniently computable
by means of standard integration schemes. This is a key benefit
of this approach since such integration schemes are a central
element of time domain simulations. Thus, the method can be
easily implemented. Moreover, it can be employed for arbitrary
waveguide cross sections and works below and above cutoff

frequencies of the respective waveguide modes.

II. General Theory

To convey the basic idea for the proposed termination
condition, a waveguide port which is connected to a RF
structure via a short waveguide with constant cross section
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Figure 1. (a) Segment of a (not necessarily) circular waveguide port of a 3D
RF structure. The grey facet indicates the absorbing waveguide boundary. (b)
Equivalent circuit of the waveguide port, where onlyM (of an infinite number
of) port modes are indicated by their modal voltagesvm(t) and currentsim(t).

is considered in Fig. 1(a). Facet∂Ωwg (grey area) denotes the
absorbing waveguide boundary. Waves travelling from the RF
structure towards the absorbing boundary are not reflected.
It is commonly known that the transient transverse electric
and magnetic fields in the plane∂Ωwg (which is enclosed by
PEC walls) can be described by means of frequency and time
independent orthonormalized mode patternsL t,m(r t):

Et(r t, t) =

∞
∑

m=1

L t,m(r t) vm(t), (1)

H t(r t, t) =

∞
∑

m=1

nz × L t,m(r t) im(t), (2)

wherevm(t) and im(t) are referred to as modal voltages and
currents andnz is the normal vector of∂Ωwg pointing into
the structure. The transverse spatial coordinates are denoted
by r t ∈ ∂Ωwg. The patternsL t,m(r t) are determined by solving
the 2D Helmholtz equation on∂Ωwg. Moreover, the patterns
regard TE as well as TM waveguide modes. From (1) and (2)
it is obvious that an infinite number of modes is needed for
the field construction. However, only a finite number of modes
with cutoff frequencyωco in or below the frequency interval
of interest can principally propagate through the waveguide of
constant cross section, depicted in Fig. 1(a). The remaining
modes are evanescent modes with cutoff frequencyωco above
the frequency interval of interest. These modes exponentially
decay along the waveguide with decay rate depending on
ωco. Thus, all modes above cutoff and only the first set of
modes below cutoff need to be considered in (1) and (2).



Consequently, it is sufficient to employ only this finite number
of “accessible modes” [4, p. 476] for the transverse field
expansion. Fig. 1(b) shows the equivalent circuit for the
waveguide port.M mode patterns and their respective transient
modal voltagesvm(t) and currentsim(t) are indicated. The exact
“infinite guide” [4, p. 476] modal termination conditions for
the modal voltages and currents are well-known in frequency
domain:

I m(s) = Z−1
0,m(s) V m(s) = G 0,m(s) V m(s), (3)

where s = jω is the complex angular frequency andV m(s)
and I m(s) are the modal voltages and currents in frequency
domain.Z 0,m(s) and G 0,m(s) denote the modal characteristic
wave impedances and admittances. Relation (3) emulates the
short waveguide with constant cross section (refer to Fig, 1(a))
to be infinitely long such that there is no reflection from∂Ωwg.
The modal characteristic wave impedances and admittances
are different for TE and TM port modes:

GTE
0,m(s) =

1
ZTE

0,m(s)
=

√

ε0
µ0

√
s2+ω2

co,m

s , (4)

GTM
0,m(s) =

1
ZTM

0,m(s)
=

√

ε0
µ0

s√
s2+ω2

co,m

, (5)

where
√

ε0/µ0 is the free space admittance andωco,m the cutoff
frequency of them-th mode. For each mode the transient elec-
tric field at the termination corresponds to a transient magnetic
field which has to be assigned in the plane∂Ωwg to accomplish
the absorbing condition. Therefore, (3) is transformed into
time domain. This yields the convolution

im(t) = g0,m(t) ∗ vm(t), (6)

with the inverse Laplace transformL−1
{

G 0,m(s)
}

(t) = g0,m(t).
Both inverse Laplace transforms corresponding to (4) and (5)
can be found in [4], [5], [6]. Bessel functions and integrals
over Bessel functions are involved ing0,m(t). Alternatively, the
currentsim(t), which are dependent on the voltagesvm(t) can
be approximated by a state space model

∂

∂t
x(t) = ωco,m A x(t) + ωco,m B vm(t), (7)

im(t) = C x(t) + D vm(t), (8)

in combination with standard integration schemes which are
needed anyhow while performing transient simulations. In fact,
two different sets of state space models need to be constructed:
one set for TE modes

{

ATE,BTE,CTE,DTE} and one set for TM
modes

{

ATM ,BTM ,CTM ,DTM}, respectively. These matrices are
created by approximating the modal characteristic admittances
with a cutoff frequency ofωco = 1 rad/s using a fraction:

G 0(s) ≈
a0 + a1s + . . . aN

N

b0 + b1s + . . . + bN
N

= C
(

s I − A
)−1B + D. (9)

One way to determine the coefficients an and bn is the
application of a Padé approximation about the points0 = 1.
Once these coefficients are known, the state matrices are filled
such that the frequency domain transfer function of (7) and (8)
equals the rational function (r.h.s of (9)). Obviously the quality
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Figure 2. Reflection factors11(ω) of a TE mode withωco = 1 rad/s in a
waveguide with lengthL = c0/ωco, wherec0 is the speed of light in vacuum.
The waveguide is matched at both ends with the presented termination
condition. The calculation is performed based on analytically known field
distributions. The blue curve plots the artificial reflection of the MABC for
N = 6, red for N = 12, black forN = 16 and magenta forN = 20.

of the approximation is improved if the orderN of the rational
function is increased. Yet, largeN lead to large state matrices,
sinceA ∈ RN×N , B ∈ RN×1, C ∈ R1×N , D ∈ R1×1.

III. Numerical Validation

The validation of the scheme is performed in frequency
domain as this allows for the comparison of the results with
analytical formulas. Nonetheless, the marginal stabilityof (7)
is checked via the eigenvaluesλi of the state matrixA, i.e.
ℜ(λi) ≤ 0 ∀i. To determine the quality of the MABC based
on SSMs, the analytical field distribution of a TE mode in
a waveguide with constant cross section is considered. The
approximated termination condition (r.h.s of (9)) is assigned
to voltages and currents of the modes at both waveguide
ends. Accordingly, the reflection coefficients of the waveguide
(which have to be zero for an ideal absorbing boundary
condition) are computed for different N, see Fig. 2. For
N = 20 the artificial reflection falls below−250 dB above
the cutoff frequency. Moreover, all plots have in common that
the maximal reflection is atω = ωco. This reflection is almost
invariant with respect toN.

IV. Summary and Conclusions

The presented MABC avoids the explicit calculation of
convolutions with Bessel functions. Sufficiently far away from
the cutoff frequency of the modes an artificial reflection in
the order of the numerical noise is achieved. However, the
maximal reflection at the cutoff frequency is independent of
the approximation orderN and stays at≈ −30 dB.
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