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Abstract—In this article we present a novel Discontinuous Here,F = (E, H)" is the field vector defined in the space-time
Galerkin Finite Element Method for wave propagation problems.  domain of interesQ. The matrices;. and n. represent the
The method employs space-time Ttz basis functions that material operatorsy = (4, aX)T is the diferential operator.

satisfy the underlying partial differential equations exactly in . S . .
an element-wise fashion. We demonstrate spectral convengee After this equation is obtained we apply the standard tgstin

of the approximation error in the Lp-norm. High order time Procedure with test functions = (V5, V)T and subsequently
integration is an inherent property of the method, and we ob&in  perform an integration by parts yielding
spectral convergence in the entire space-time domain of iatest

(i.e. in space and time simultaneously), which is not achied f VE(TIeF) . ndQ+f VH(,7 F)-ndQ 2
by any common approaches of time-stepping finite element 90 90 g
discretizations of space only. _ (VT \E neF)q - (VT VA 1:F)g =0

Index Terms—Computational Electromagnetics, Maxwell
equations, Finite Element Methods, Convergence of numerid \yheren = (nx,n)T is the unit outward normal on the space-
methods, Discontinuous Galerkin Method, Tréftz Method time domain boundaryQ. A numerical implementation of 2
| NTRODUCTION is described in the following section.

Discontinuous Galerkin Finite Element Methods (DG-FEM) APPROXIMATION WITH TREFFTZ FUNCTIONS
[1]-[3] are a major class of tools to numerically simulate
complicated electromagnetic systems. In this article vesgmt
a highly accurate type of DG-FEM for time-domain applic

Trefftz basis functions are a set of problem specific solutions
of the underlying partial dierential equations. Tfiéz func-

. R . . ions in the form of plane waves have been previously applied
tions. A distinguishing new attribute of the method is the af in the frequency domain in the context of a DG method for

Trefitz b_asis fur_1cti0ns [417[6]’ Whiqh' by definiti_on, satisfyeth the homogeneous Helmholtz equation [7]-[9]. In this work,
underlying partial dferential equations exactly in an elememﬁowever a space-time-domain Tite method is developed—to
wise fashion. The method is, hence, a Discontinuous Gaierlgur knov;/Iedge for the first time

Trefftz Finite Element Method (DGT-FEM). Since T For (1+1)-dimensional Maxwell’s equations (i.e. Maxwell’s

Iungtlons;\rg rt(;quwed to solvectjh? equz_art;]onsfexactly, timg? . equations in one spatial and one temporal dimension) toahsp
o depend both on space and time. Therefore, we o aTg ynomials of the form

space-time DGT method. We obtain high order time integ

tion in a consistent manner, and achieve spectral conveegen uE-p* +(xFvt)P
in space-time. Existing numerical methods exhibit polyram uP* = = , 3
convergence or, at best, spectral convergence in space only Tl %(Xi vt)P

UNDERLYING PARTIAL DIFFERENTIAL EQUATIONS provide a Tréftz basis. Here the first and second component,

For a wave propagating in a given directianwith one- u® andu”, of any basis function in (3) represents the electric
component field& = E, andH = H,, we can write the system and magnetic field, respectively. We would like to emphasize

of sourceless Maxwell's equations in a coordinate free fornjhat the material parameters= /e andv = 1/ yjue (i.e.
intrinsic impedance and local speed of light respectivehter

T _ T _ . \ . i \
vVim-F=0 and V' -p.-F=0. (1) the basis functions directly. Each order is included twice f
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Figure 2: Electric field of a one-dimensional Gaussian wave
with a medium interface axg = —0.25, simulated with the
DGT-FEM. The material interface is located in the interiér o
an element. The solution in the whole space-time domain of
interest & t) € [-5,5] x [0, 20] is displayed.

Figure 1: Transport polynomials of ordeps= 0,1, 2, 3 in free

space (i.e = 1 andy, = 1) to describe waves traveling

rightwards. 1 B
10—1 a :
102 i S — I
representing the directions of the transverse electroetagn § 1073
waves. A wave is traveling rightwards & and H have ST
equal sign, and leftwards otherwise. The first four transpor 2 gy
polynomials in free space are depicted in Fig. 1. b= 10-6
ResuLts & 0T
To date, we have simulated fiirent wave propagation 1078 Trefftz DG
scenarios. First, we verified the propagation of a Gaussian 10-9} [Leapfrog DG -

wave in free space. Then, we applied the method to a Gaussian R S E—
wave propagation through several material interfaces,-com 0 b2 345 6 78

forming the boundaries of the computational cells. Finally Element Order (oc #DoF per Cell)

we used DGT to simulate Gaussian wave transmission and

reflection at a material interface located inside a compriat  Figure 3: Order dependeht error of DGT and Leapfrog DG.
cell. Remarkably, as seen in Fig. 2, the presence of the

material interface does noffact the accuracy and the spectral

convergence ot the method. This is a key feature unique to {BeJ. Jirousek and A. Zielinski, “Survey of fiiez-type element formula-
proposed approach. tions”, Comp and Struc, vol.63, pp.225 — 242, 1997.
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