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Abstract—this paper compares the numerical performance of 2 other node as shown in Fig. 1. The Delaunay trikatigun,
numerical methods, the finite element method and th natural  which is the dual of the Voronoi diagram, is buly
element method. Natural element method is relativglrecent and connecting the nodes whose Voronoi cells have cammo

is based on functions belonging to the Voronoi celfamily. : . . .
Whereas it is has been proved that this method gisesmoother boundaries, thus leading to the notion of natuesginbors.

and more accurate solutions than the finite elemest its .

computational cost is also known as being highernlthis paper ' i. I

we compare computational efficiency, i.e. accuracjor a given \ ; |

cost, of finite elements and natural elements, foboth Lagrange y ke \

and Sibson shape functions. We also bring into theomparison a { | |

Voronoi cell based finite difference scheme whichrpves to be L | *— \ :

very efficient. The error is calculated using duaformulations. / \ e
Index Terms— Finite element methods, finite difference / ; "

methods, Natural element methods, computational eéfiency \ ‘\ o | |

|. INTRODUCTION " ‘| | [ ;
\ \ \

Meshless methods have been widely studied durieg th | : -
past 20 years [1]. They proved to bring high accyra .“ \. | / | J
solutions, but have also inherent difficulties smtle properly Fig. 1. A Voronoi diagram (pink color) and its asis¢ed Delaunay
boundary conditions, material jump, and connectitth finite triangulation (gray color). One node, its Voronell @nd its 5 natural
elements [2]. In the late 90s, a new method caMedural neighbors are highlighted.

Element Method (NEM) appears [3] [4], based onMtbeonoi B, Shape Function
cell surrounding each node. This method provesveramme .
: : . Based on the Voronoi diagram, a natural elemenpesha
all major drawbacks of previous meshless methodsjew : . .
function can be expressed. In the literature, weriformulas

keeping the smooth and highly accurate solutionseoied d A h q he Sibsd
with the latter. This method has also been sucakgssfsed in are proposed. Among the most used are the Sibsdn an
Lagrange functions [4]._

the field of electrical engineering problems [6].

Still the computational cost of Natural Element Nt is
significantly higher than the usual cost of Firtlements. In
this work, we propose to compare computationaktiefficy -
i.e. accuracy for a given cost, of finite elemeatsl natural
elements - of both FEM and NEM, for which we takeoi
account both Lagrange and Sibson functions. Moneose
finite difference implementation of Voronoi cell nittions
(NFDM) is also included in the comparison.

Il.  VORONOICELL FUNCTIONS 1
Fig. 2. NEM shape function computation.

A. Voronoi Diagram

The natural element method uses the concept ofndiro For the Sibson functions, their determination mag b
cell. Let consider a set of nodés = {n;, n,, ms, ... , R} performed by analogy with the classical FE shapetfans.
distributed in the whole domain. The Voronoi diagras a For first-order triangles for instance, it is wkitown that the
subdivision of the domain into cells, where eacl @ shape functions are given by a ratio of surfaces. $ibson
associated to node is such that any point i is closer to shape functions, the same principle is appliech&\oronoi
noden; than to any other node for i # j. These cells are the cells as shown in Fig. 2. The shape function atiatyx is thus
so called Voronoi cells. given by (2) where eacB(x) represents the sub area of the

Considering for instance a 2D spa@geis the region of the Voronoi cell centered orx linked to the natural neighbor ,
plane that contains the pointsclosest to node; than to any illustrated by the hashed region in Fig. 2.
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It can be noticed that when moving to 3D, Sibsamcfion 5 / /
will involve relatively complex calculations of wghes. o010 A

In 2D (resp. 3D), Lagrange functions are based mtia of 0000 = A /
length (resp. surface), and therefore are more effisient. /
However, continuity property in that case is slight 0.0002% x
deteriorated. 0,0000%
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C. Finite Difference and Finite Element with Voron@lIC Flement size

FUnCtlonS —4—FEM —@—Laplace NFDM  ====FEM 2 ===Sibson

Both collocation for NFDM and Galerkin schemes KM Fig. 5. Accuracy of NEM, FEM fland 29order) and NFDM according to
can be built using Voronoi cell functions. Finitéeraent the length between nodes.
approach requires the integration of the functiemg] due to Last, Fig. 6 compares the computational performasice

the rational aspect of these functions and theimpmiex these 3 methods. For a given accuracy, the methasisd on
geometric support, a relatively large number of @apints is  Voronoi cell functions - NFDM and NEM - are sigodntly
generally used. On the contrary, the finite differe approach Much faster than Siorder FEM (more or less one order of
described in [5] is very efficient in terms compiga time and magnitude in time). This tends to clearly demortstthe very

maintains good accuracy even on unstructured grids. interesting behavior of the Voronoi cell approadhe
interpolation has a high degree of continuity, ded not

exhibit edge noise, and last, it has a kind of rigadt
) ] interpolation behavior around a node, very simitathe one
To illustrate the computational performance of eacBpserved with meshless methods. A more compretensiv

method, we are presenting numerical results basedo review of these results will be developed in theeeded
electrostatic problem describing an L shaped cégace. This yersijon of the paper.

test problem has been solved by all methods (FEApldce

I1Il.  NUMERICAL RESULTS ANDCONCLUSIONS

and Sibson NEM, and NFDM) and for each case, by du oo ,, Computstienalefficieney L, Compueonime.
formulations to determine an error estimator. 0,0000%

First, Fig. 4 plots the relative computation tinrAs.we may 0,0001% =
expect, NFDM performs best since no integratiomeéeded s oron e ]
together with 2 order FEM, then comes™lorder FEM and & / ——
last NEM which pays the cost of both numerical gnédion oro100% = et ==
and a larger band size. 0,1000% —
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— Fig. 6. Compared performance of NEM, FEM and NFDM.
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