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Overview of Meshless Methods

Abstract— This article presents an overview of the main develop-
ments of the mesh-free idea. A review of the main publications
on the application of the meshless methods in Computational
Electromagnetics is also given.

I. I NTRODUCTION

Several meshless methods have been proposed over the last
decade. Although these methods usually all bear the genericlabel
“meshless”, not all are truly meshless. Some, such as those based
on the Collocation Point technique, have no associated meshbut
others, such as those based on the Galerkin method, actuallydo
require an auxiliary mesh or cell structure. At the time of writing,
the authors are not aware of any proposedformalclassification of
these techniques. This paper is therefore not concerned with any
classification of these methods, instead its objective is topresent
an overview of the main developments of themesh-freeidea,
followed by a review of the main publications on the application
of meshless methods to Computational Electromagnetics.

II. M ESHLESSMETHODS - THE HISTORY

A. The Smoothed Particle Hydrodynamics

The advent of themesh free idea dates back from 1977,
with Monaghan and Gingold [1] and Lucy [2] developing a
Lagrangian method based on theKernel Estimatesmethod to
model astrophysics problems. This method, namedSmoothed
Particle Hydrodynamics(SPH), is aparticle methodbased on
the idea of replacing the fluid by a set of moving particles and
transforming the governing partial differential equations into the
kernel estimates integrals [3].
Despite the success of the SPH in modelling astrophysics
phenomena, it was only after the 90’s that the SPH was ap-
plied to model others classes of problem. This consequently
exposed some inherent characteristics of the method, such as
tensile stability, energy zero, lack of interpolation consistency
and difficulty in enforcing essential boundary conditions [4].
The latter two are consequences of using the SPH to model
bounded problems, since originally the SPH was formulated to
model open problems. Over the past years many modifications
and correction functions have been proposed in an attempt to
restore the consistency and consequently the accuracy of the
method [5]. The SPH method has been successfully applied
to a wide range of problems such as free surface, impact,
magnetohydrodynamics, explosion phenomena, heat conduction
and many other computational mechanics problems which were
presented and discussed in extensive reviews of SPH [6] [5].

B. The Diffuse Element Method (DEM)

The firstmesh-freemethod based on the Galerkin technique was
only introduced over a decade after Monaghan and Gingold first
published the SPH method. TheDiffuse Element Method(DEM)
was introduced by Nayroles and Touzot in 1991. Many authors
state that it was only after the Diffuse Element method that the
idea of a mesh-freetechnique began to attract the interest of the
research community. The idea behind the DEM was to replace
the FEM interpolation within an element by theMoving Least
Square(MLS) local interpolation [7].

Fig. 1. EFG background cell structure.

C. The Element-Free Galerkin (EFG)

In 1994 Belytschko and colleagues introduced theElement-Free
Galerkin Method(EFG) [8], an extended version of Nayroles’s
method. The Element-Free Galerkin introduced a series of im-
provements over the Diffuse Element Method formulation, such
as

• Proper determination of the approximation derivatives:
In DEM the derivatives of the approximation function
U h are obtained by considering the coefficientsb of the

polynomial basisp as constants, such that
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d x
b(x) (1)

In EFG thefull form of the derivatives is used, such that
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Belytschko argued in his paper that neglecting the deriva-
tives ofb(x) detracts significantly from the accuracy of the
method.

• Imposing essential boundary conditions: The MLS trial
function does not yield an interpolation, i.e.U (x) 6=
U h(x), therefore the essential boundary conditions are not

directly satisfied. Belytschko showed that the DEM fails to
pass the patch test due to the fact that these conditions are
not properly fulfilled. In the EFG formulation, Lagrange
Multipliers are used in the weak form to enforce the
essential boundary conditions.

• Process for Numerical Integration: Meshless methods
based on the Galerkin technique require numerical integra-
tion of the weak form. In the Element-Free Galerkin an
auxiliary cell structure, shown in Fig. 1, is used in order to
create a “structure” to define the quadrature points.

The Element-Free Galerkin method was found to be more accu-
rate than the Diffuse Element method, although the “improve-
ments” implemented in the method increased its computational
costs [8]. EFG is one of the most popular mesh-free methods and
its application has been extended to different classes of problems
such as fracture and crack propagation, wave propagation ,
acoustics and fluid flow.
Many authors state that the use of a background cell to perform
the numerical integration eliminates themesh-freecharacteristic
of the EFG, therefore the method is not truly mesh-free.



D. Reproducing Kernel Particle Method

In 1995 Liu proposed theReproducing kernel particle method
(RKPM) [9] in an attempt to construct a procedure to correct the
lack of consistency in the SPH method. The RKPM has been
successfully used in multiscale techniques, vibration analysis,
fluid dynamics and many other applications. Later, a combina-
tion of MLS and RKPM resulted in theMoving Least Square
Reproducing Kernel Particle method[10] [11].

E. Finite Point Method

The Finite Point methodwas proposed by Onãte and colleagues
in 1996 [12] [13]. It was originally introduced to model fluid
flow problems and later applied to model many other mechanics
problems such as elasticity and plate bending. The method is
formulated using the Collocation Point technique and any of
the following approximation techniques,Least Square approxi-
mation (LSQ), Weighted Least Square approximation(WLS) or
Moving Least Squares(MLS) can be used to construct the trial
functions.

F. Meshless Local Petrov-Galerkin

The Meshless Local Petrov-Galerkin introduced by Atluri and
Zhu in 1998 [14] presents a different approach in constructing a
mesh-freemethod. It is based on the idea of theLocal weak
form which eliminates the need of the background cell and,
consequently, performs the numerical integration in a mesh-
free sense. The MLPG uses the Petrov-Galerkin method in
an attempt to simplify the integrand of theweak form. The
method was originally formulated using the MLS technique and
later Atluri extended the MLPG formulation to other meshless
approximation techniques. The freedom of choice for the test
function in the Petrov-Galerkin method gives rise to different
MLPG schemes [15]. The MLPG and its different schemes have
been applied to a wide range of problems such as Euler-Bernoulli
Beam Problems, solid mechanics, vibration analysis for solids,
transient heat conduction, amongst many others.

G. Radial Basis Functions

Radial basis functions (RBF) were first applied to solve partial
differential equations in 1991 by Kansa, when a technique based
on the direct Collocation method and the Multiquadric RBF was
used to model fluid dynamics [16] [17]. The direct Collocation
procedure used by Kansa is relatively simple to implement, how-
ever it results in an asymmetric system of equations due to the
mix of governing equations and boundary conditions. Moreover,
the use of Multiquadric RBF results in global approximation,
which leads to a system of equations that is characterised bya
dense stiffness matrix. The RBF Hermite-Collocation was pro-
posed as an attempt to avoid the asymmetric system of equations.
Both globally and compactly supported radial basis functions
have been used to solve PDEs and results have shown that
the global RBF yielded better accuracy. However the compactly
supported stiffness matrix is sparse, while the global RBF results
in a dense matrix that may become very expensive to solve in the
case of a large number of collocation points. Recently, another
approach based on the global RBFs has been proposed. The
method, namedLocal Multiquadric, suggests the construction of
the approximation using sub-domains, causing the Multiquadric
RBF to be truncated at the “boundaries” of the sub-domains,
resulting in a local approximation and a sparse stiffness matrix
[18].
Radial basis functions have also been used in the Boundary
Element method formulation, such as in the Dual Reciprocity

Method (DRM), Method of Fundamental solution (MFS) and
the RBF Boundary Knot method (BKM). These methods have
been successfully applied to solve non-linear problems in Com-
putational Mechanics.
A variational approach to solve the Boundary Value Partial
(BVP) using compactly supported radial basis functions hasbeen
investigated by [19] and another approach suggested the use
of radial basis functions in the Meshless Local Petrov-Galerkin
formulation [15].
In the last decade the radial basis function approximation
technique has undergone intensive research. However, a large
number of publications on the subject concern its mathematical
proof and foundations. An extensive review of the mathematical
background of RBFs is presented in [20]. Some applications of
the RBFs in the solution of physical problems worthy of mention
are transport phenomena, heat conduction, analysis of Kirchoff
Plates and Euler-Bernoulli beam problems amongst others.

H. Point Interpolation Method

The Point Interpolation method (PIM) uses thePolynomial
Interpolation technique to construct the approximation. It was
introduced by Liu in 2001 as an alternative to the Moving Least
Square method [21]. The PIM, originally based on the Galerkin
method, suffers from the singularity of the interpolation matrix
and also from the fact that it does not guarantee the continuity
of the approximation function. Several approaches have been
investigated by Liu in an attempt to overcome these problems
[3]. Improvements have been obtained using theLocal Petrov-
Galerkin method and Multiquadric radial basis functions. This
procedure resulted inLocal Radial Point Interpolation methods
(LRPIM). The LRPIM has been applied to solid mechanics, fluid
flow problems and others. These applications are referred toand
examined in detail in [3].

I. Other Meshless Methods

Some of the most popular and important meshless methods have
been presented in the previous subsections. However there are a
great number of Meshless Methods documented in the literature
and it is beyond the scope of this work to present a detailed
description of all of them. Nevertheless, the following methods
are also considered worthy of mention:
Duarte and Oden introduced in 1995 theH-p Cloud method
which is a mesh-free method based onh and p enrichment of
the approximation functions [22] [23].
A meshless method based on the Boundary Element method
(BEM) was first introduced by Mukherjee and Mukherjee [24]
and was named theBoundary Node Method. Later a similar
approach was used by Zhu and Atluri and was named theLocal
Boundary Integral Method(LBIM) [25]. The LBIM differs from
the former due to the use of the local weak form, instead of the
global weak form approach.
In 2000, De and Bathe introduced the method ofFinite Spheres
[26], which can be seen as one of the MLPG schemes. The
method of Finite Spheres uses the Partition of Unity [27] to
construct the approximation function and therefore essential
boundary conditions are satisfied a priori.

III. M ESHLESS INELECTROMAGNETICS- AN OVERVIEW

The application of meshless methods to computational electro-
magnetics started in the early 90’s, just after Nayroles published
his paper on the Diffuse Element method. However, at present,
the range of application is still very modest as compared with that



found in the field of Computational Mechanics. In this section
the most relevant publications on the subject are covered briefly.
The application of meshless methods to model computational
electromagnetics was first introduced by Yve Marèchal in 1992,
when he applied the Diffuse Element method to model two-
dimensional static problems [28]. Later Marèchal examined the
application of DEM as a post-processing tool for CEM [29] [30].
More recently, the Diffuse Element method has been used in
electromagnetic device optimisation [31] [32].
In 1998 the Moving Least Square Reproducing Kernel Particle
Method (MLSRKPM) was applied to model two-dimensional
static electromagnetic problems [33] [34]. This techniqueis a
modified version of the Element-Free Galerkin where the MLS
approximation is replaced by the MLSRKPM approximation.
Viana also presented a comparison between both procedures and
showed that the MLSRKPM yields better accuracy [34]. Results
were also compared with FEM.
The Element-Free Galerkin method has been applied to model
small gaps between conductors [35], static and quasi-static
problems [36] and to model the detection of cracks by pulsed
eddy current in Non-Destructive Testing [37].
A combined FEM and EFG technique was used in [38] and [39].
The proposed technique suggested the use of a coarse Finite
Element mesh andfree-nodes(meshless) as a refinement tool
for the FEM solution. Thefree-nodesshould be added in regions
subjected to sharp gradients. The method was successfully used
to investigate 3-D eddy current problems [38].
The Element-Free Galerkin has also been successfully applied
to model Magnetohydrodynamics [40].
The Point Collocation Fast Moving Least Square Reproducing
Kernel method was introduced and applied to model two-
dimensional electromagnetics problems [41]. Kim proposedan
alternative formulation to the MLS-RKPM that uses a variable
dilation parameter, which allows a more flexible algorithm and
improves the accuracy.
Several aspects of the meshless formulation have been investi-
gated under the CEM context such as the interface between dif-
ferent regions, boundary conditions [42] [43] [44], and meshless
nodal distribution [45].
Different meshless methods have been proposed to model a
two-dimensional power transformer. In [46] the Wavelet-Element
Free Galerkin was proposed. This technique used the so called
Wavelet-Element Free Galerkin method combined with a single
layer of Finite Element mesh along the boundary containing
essential boundary conditions. In [47] the Meshless Local Petrov-
Galerkin based on the MLS approximation modified by the
jump functionwas used. Lagrange Multipliers were employed
to enforce the essential boundary conditions. In [48] a hybrid
Wavelet and Radial basis function was investigated. The radial
basis functions approximation method is used along the external
boundaries to enforce the essential boundary conditions ina
straightforward manner.
A coupled Meshless Local Petrov-Galerkin and FEM was investi-
gated in [49] to model a two-dimensional electrostatics problem.
Meshless Radial Basis Functions have also been applied to CEM.
In [50] the authors apply the Hermite-collocation method using
Wendland’s RBF to model elliptical waveguides. The use of
meshless techniques to model curved boundaries offers great
advantages over mesh based methods, since the boundaries can
be accurately represented. The results shown in [50] presented
reasonable accuracy when compared with the analytical solu-
tions.
The Meshless Local Petrov-Galerkin with Radial basis functions
was applied to model 2-D magnetostatic problems in [51].

In this work a Heaviside step function was used as the test
function in the RBF-MLPG formulation. The procedure reduces
considerably the computational cost required in the numerical
integration and the results presented good agreement with the
Finite Element method. Later, Viana examined the Local Radial
Point Interpolation Method to model 2-D eddy current problems
[52]. The method yielded good agreement compared to the
analytical solution. In both [51] and [52] Viana used theLocal
Multiquadric approach and the local weak form technique. The
procedure results in a truly mesh-free method, alleviatingthe
need for a background mesh and constraint techniques to impose
the essential boundary condition.
Very recently the use of the SPH to model time-domain Maxwell
equations was proposed in [53]. This procedure uses the SPH
approximation function to represent the fields,E andH, in the
finite difference time domain scheme. The nodes, or particles,
as they are normally referred to in the SPH, are arranged in a
uniform grid, similar to theYeegrid [54]. The absorbing bound-
ary conditions, traditionally used in the Finite Difference Time
Domain (FDTD), are easily implemented in the SPH procedure.
The application of SPH to model time domain electromagnetic
problems may open a new range of possibilities in Computational
Electromagnetics Modelling.
A combination of PIM and BEM, namedBoundary Mesh-
less Method(BMLM), was proposed in [55] to model two-
dimensional transient electromagnetics problems. The proposed
method uses the advantages of BEM in reducing the dimen-
sionality of the problem under investigation, and then usesthe
PIM approximation technique in one dimension, avoiding the
singularity problem of the interpolation matrix. The authors
pointed out that the BMLM is elegant and efficient. Their results
were compared to the analytical solution and showed very good
agreement. However, applying this method to higher dimensions
may lead to difficulties due to the inherent problems of PIM in-
terpolation that leads to singularities of the interpolation matrix.

IV. CONCLUSIONS

Meshless methods theory is still in its infancy compared with
that of Finite Elements and Finite Differences. However, inthe
last decade the pace of development ofmesh-freetheory has
increased as a result of intensive research. Some claim that
no proper mathematical analysis has been performed on these
methods, others that there is a need for proper classification
of these methods, claiming that methods based on the Galerkin
formulation are not trulymesh-freedue to the use of background
cells. Collocation point methods are said to be truly mesh-free,
however, the procedure is known for its instability and low
accuracy. On the other hand the Galerkin procedure is stable
and more accurate. The application of meshless methods to
CEM has not yet made a great contribution. However, from the
few publications found, one can verify that these methods offer
advantages either on their own or coupled with FEM and more
investigation is needed in order to take full advantage of these
procedures.
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[45] C. Herault, V. Leconte, Y. Maréchal, and G. Meunier, “The node distribu-
tion for meshless methods,”EPJ Applied Physics, vol. 15, pp. 135 – 140,
2001.

[46] S. Yang, G. Ni, J. R. Cardoso, S. L. Ho, and J. M. Machado, “A
combined wavelet-element free Galerkin method for numerical calculations
of electromagnetic fields,”IEEE Trans. on Magnetics, vol. 39, pp. 1413 –
1416, 2003.

[47] G. Ni, S. L. Ho, S. Yang, and P. Ni, “Meshless local Petrov-Galerkin
method and its application to electromagnetic field computations,” Inter-
national Journal of Applied Electromagnetics and Mechanics, vol. 19, pp.
111 – 117, 2004.

[48] S. L. Ho, S. Yang, H. C. Wong, and G. Ni, “A Meshless Collocation Method
Based on Radial Basis Functions and Wavelet,”IEEE Trans. on Magnetics,
vol. 40, pp. 1021–1024, 2004.

[49] Z. Meiling, N. Yufeng, and Z. Chuanwei, “A new coupled MLPG-
FEM method for electromagnetic field computations,” in3rd International
Conference on Computational Electromagnetics and Its applications, 2004.

[50] P. Jiang, S. Li, and C. H. Chan, “Analysis of elliptical waveguides by a
meshless collocation method with the Wendland radial basisfunctions,”
Microwave and Optical Technology Letters, vol. 32, no. 2, pp. 162 – 165,
2002.

[51] S. A. Viana, D. Rodger, and H. C. Lai, “Meshless local Petrov-Galerkin
method with radial basis functions applied to electromagnetics,” IEE
Proceedings: Science, Measurement and Technology, vol. 151, pp. 449–
451, 2004.

[52] ——, “Meshless local Petrov-Galerkin method with radial basis functions
applied to electromagnetics,”IEEE Proceedings: Science, Measurement and
Technology, vol. 151, pp. 449–451, 2004.

[53] G. Ala, E. Francomano, A. Tortorici, E. Toscano, and F. Viola, “Smoothed
Particle Interpolation for electromagnetic simulations,” in ECCOMAS The-
matic Conference on Meshless Methods, 2005.

[54] A. Taflove and S. C. Hugness,Computational Electrodynamics - the finite-
difference time-domain method, 2nd ed. Artech House, 2000.

[55] Y. Zhang, K. R. Shao, Y. Guo, and J. D. Lavers, “A BoundaryMeshless
Method for Transient Eddy Current Problems,”IEEE Trans. on Magnetics,
vol. 41, pp. 10 – 13, 2005.

AUTHORS NAME AND AFFILIATION

S. A. Viana (simoneaviana@dee.ufc.br), Universidade Federal
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