Technical Article
Overview of Meshless Methods

Abstract— This article presents an overview of the main develop-
ments of the mesh-free idea. A review of the main publication
on the application of the meshless methods in Computational
Electromagnetics is also given.

I. INTRODUCTION

Several meshless methods have been proposed over the last
decade. Although these methods usually all bear the gelabet
“meshless”, not all are truly meshless. Some, such as thesedb

on the Collocation Point technique, have no associated imgsh

others, such as those based on the Galerkin method, adimlly,:ig. 1

require an auxiliary mesh or cell structure. At the time oitivg,

the authors are not aware of any propof®chal classification of
these techniques. This paper is therefore not concernédanit
classification of these methods, instead its objective ésent
an overview of the main developments of thesh-freeidea,
followed by a review of the main publications on the applimat
of meshless methods to Computational Electromagnetics.

Il. MESHLESSMETHODS- THE HISTORY as

A. The Smoothed Particle Hydrodynamics

The advent of themesh freeidea dates back from 1977,
with Monaghan and Gingold [1] and Lucy [2] developing a
Lagrangian method based on thernel Estimateamethod to
model astrophysics problems. This method, narSedoothed
Particle Hydrodynamic{SPH), is aparticle methodbased on
the idea of replacing the fluid by a set of moving particles and
transforming the governing partial differential equationto the
kernel estimates integrals [3].

Despite the success of the SPH in modelling astrophysics
phenomena, it was only after the 90's that the SPH was ap-
plied to model others classes of problem. This consequently
exposed some inherent characteristics of the method, ssich a
tensile stability, energy zero, lack of interpolation dstency
and difficulty in enforcing essential boundary conditior. [
The latter two are consequences of using the SPH to model
bounded problems, since originally the SPH was formulated t
model open problems. Over the past years many modifications
and correction functions have been proposed in an attempt to
restore the consistency and consequently the accuracyeof th
method [5]. The SPH method has been successfully applied
to a wide range of problems such as free surface, impact,
magnetohydrodynamics, explosion phenomena, heat canduct
and many other computational mechanics problems which were
presented and discussed in extensive reviews of SPH [6] [5].

B. The Diffuse Element Method (DEM) The
The firstmesh-freamethod based on the Galerkin technique waste

quadrature cells

L quadrature points

nodes_____

EFG background cell structure.

C. The Element-Free Galerkin (EFG)

In 1994 Belytschko and colleagues introduced Btement-Free
Galerkin Method(EFG) [8], an extended version of Nayroles’s
method. The Element-Free Galerkin introduced a series of im
provements over the Diffuse Element Method formulatiorthsu

Proper determination of the approximation derivatives

In DEM the derivatives of the approximation function
U " are obtained by considering the coefficiebtof the
polynomial basigp as constants, such that

dUu"(x) _dp"(x)

b(x) 1)

dx dx
In EFG thefull form of the derivatives is used, such that
du"(x) dpT(x) o, . db(x)

Belytschko argued in his paper that neglecting the deriva-
tives of b(x) detracts significantly from the accuracy of the
method.

Imposing essential boundary conditions The MLS trial
function does not yield an interpolation, i.€{ (x) #

U "(x), therefore the essential boundary conditions are not
directly satisfied. Belytschko showed that the DEM fails to
pass the patch test due to the fact that these conditions are
not properly fulfilled. In the EFG formulation, Lagrange
Multipliers are used in the weak form to enforce the
essential boundary conditions.

Process for Numerical Integration Meshless methods
based on the Galerkin technique require numerical integra-
tion of the weak form. In the Element-Free Galerkin an
auxiliary cell structure, shown in Fig. 1, is used in order to
create a “structure” to define the quadrature points.

Element-Free Galerkin method was found to be more accu-
than the Diffuse Element method, although the “improve

only introduced over a decade after Monaghan and Gingold firsents” implemented in the method increased its computaltion

published the SPH method. Tieffuse Element Metho(ODEM)

costs [8]. EFG is one of the most popular mesh-free methodls an

was introduced by Nayroles and Touzot in 1991. Many authdts application has been extended to different classesadfi@ms
state that it was only after the Diffuse Element method that tsuch as fracture and crack propagation, wave propagation ,
idea of a mesh-fred¢echnique began to attract the interest of thacoustics and fluid flow.

research community. The idea behind the DEM was to replaiany authors state that the use of a background cell to parfor
the FEM interpolation within an element by tiMoving Least the numerical integration eliminates theesh-freecharacteristic

Square(MLS) local interpolation [7].

of the EFG, therefore the method is not truly mesh-free.



D. Reproducing Kernel Particle Method Method (DRM), Method of Fundamental solution (MFS) and

In 1995 Liu proposed th&®eproducing kernel particle methodthe RBF Boundary Knot method (BKM). These methods have
(RKPM) [9] in an attempt to construct a procedure to corrbet t been.successfully gpphed to solve non-linear problemsamC

lack of consistency in the SPH method. The RKPM has be@Htational Mechanics. _
successfully used in multiscale techniques, vibrationlysisg A variational approach to solve the Boundary Value Partial
fluid dynamics and many other applications. Later, a combindVP) using compactly supported radial basis functionstiees

tion of MLS and RKPM resulted in th&loving Least Square investigated by [19] and another approach suggested the use

Reproducing Kernel Particle methdd0] [11]. of radial basis functions in the Meshless Local Petrov-kite
formulation [15].
E. Finite Point Method In the last decade the radial basis function approximation

The Finite Point methodvas proposed by Onate and colleaguetrg(:hmque has undergone intensive research. Howeverga lar
in 1996 [12] [13]. It was originally introduced to model fluid umber of publications on the subject concern its mathealati

O‘?roof and foundations. An extensive review of the mathecahti

flow problems and later gpplied to model many other mechan gckground of RBFs is presented in [20]. Some applicatidns o
problems such as elasticity and plate bending. The metho RBFs in the solution of physical problems worthy of menti

formulated using the Collocation Point technique and any Qe transport phenomena, heat conduction, analysis ohiirc
the following approximation techniqued,east Square approxi- ; ’

. . S Plat d Euler-B lli b bl t others.
mation (LSQ), Weighted Least Square approximatiGiLS) or ales and Eulerbernoutl beam problems amongst others

Moving Least Square@VILS) can be used to construct the trial

functions. H. Point Interpolation Method
_ The Point Interpolation method (PIM) uses tlRolynomial
F. Meshless Local Petrov-Galerkin Interpolation technique to construct the approximation. It was

The Meshless Local Petrov-Galerkin introduced by Atluridanintroduced by Liu in 2001 as an alternative to the Moving lteas
Zhu in 1998 [14] presents a different approach in constngcsi  Square method [21]. The PIM, originally based on the Gaterki
mesh-freemethod. It is based on the idea of thecal weak method, suffers from the singularity of the interpolatioatrix
form which eliminates the need of the background cell anénd also from the fact that it does not guarantee the cotyinui
consequently, performs the numerical integration in a megbf the approximation function. Several approaches haven bee
free sense. The MLPG uses the Petrov-Galerkin method investigated by Liu in an attempt to overcome these problems
an attempt to simplify the integrand of theeak form The [3]. Improvements have been obtained using tleal Petrov-
method was originally formulated using the MLS techniqud arf>alerkin method and Multiquadric radial basis functions. This
later Atluri extended the MLPG formulation to other mesklegprocedure resulted ihocal Radial Point Interpolation methods
approximation techniques. The freedom of choice for the td&RPIM). The LRPIM has been applied to solid mechanics, fluid
function in the Petrov-Galerkin method gives rise to difer flow problems and others. These applications are referraddo
MLPG schemes [15]. The MLPG and its different schemes haggamined in detail in [3].

been applied to a wide range of problems such as Euler-Birnou

Beam Problems, solid mechanics, vibration analysis foidspl I. Other Meshless Methods

transient heat conduction, amongst many others. .
Some of the most popular and important meshless methods have

been presented in the previous subsections. However thei@ a

] ) i ) ] ] great number of Meshless Methods documented in the literatu
Radial basis functions (RBF) were first applied to solveipbrt 4 it is beyond the scope of this work to present a detailed

differential equations in 1991 by Kansa, when a techniqeeta yegcription of all of them. Nevertheless, the following huts
on the direct Collocation method and the Multiquadric RBWa,,e ais0 considered worthy of mention:
used to model fluid dynamics [16] [17]. The direct Collocation,arte and Oden introduced in 1995 thep Cloud method

procedure used by Kansa is relatively simple to implement-h |, 1. is a mesh-free method based lorand p enrichment of
ever it results in an asymmetric system of equations due€o tfp¢ approximation functions [22] [23].

mix of governing equations and boundary conditions. MOBEOV 5 meshless method based on the Boundary Element method
the use of Multiquadric RBF results in global approximatiortBEM) was first introduced by Mukherjee and Mukherjee [24]
which leads to a system of equations that is characterisesl bY 4 \was named theoundary Node MethodLater a similar
dense stiffness matrix. The RBF Hermite-Collocation was- Prapproach was used by Zhu and Atluri and was named. ¢ual
posed as an attempt to avoid the asymmetric system of eqsaﬁ%oundary Integral MethodLBIM) [25]. The LBIM differs from

Both globally and compactly supported radial basis fumio e former due to the use of the local weak form, instead of the
have been used to solve PDEs and results have shown 8bhal weak form approach.

the global RBF yielded better accuracy. However the conipact, 5000, pe and Bathe introduced the methodFisite Spheres
§upported stn‘fngss matrix is sparse, while the glpbal R&Hng 26], which can be seen as one of the MLPG schemes. The
in a dense matrix that may become very expensive to solveein fjo 04 of Finite Spheres uses the Partition of Unity [27] to
case of a large number of collocation points. Recently, k10t oo ng4ryct the approximation function and therefore esaient

approach based on the global RBFs has been proposed. Egﬁndary conditions are satisfied a priori.
method, namedlocal Multiquadrig suggests the construction of

the approximation using sub-domains, causing the Multigea
RBF to be truncated at the “boundaries” of the sub-domains,
resulting in a local approximation and a sparse stiffnesgima The application of meshless methods to computational relect
[18]. magnetics started in the early 90’s, just after Nayroledighibd
Radial basis functions have also been used in the Boundaiy paper on the Diffuse Element method. However, at present
Element method formulation, such as in the Dual Reciprocitiie range of application is still very modest as compareH thiat

G. Radial Basis Functions
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found in the field of Computational Mechanics. In this sattioln this work a Heaviside step function was used as the test
the most relevant publications on the subject are coverieflyor function in the RBF-MLPG formulation. The procedure recsice
The application of meshless methods to model computatiogainsiderably the computational cost required in the nuraéri
electromagnetics was first introduced by Yve Maréchal i8219 integration and the results presented good agreement tdth t
when he applied the Diffuse Element method to model twéinite Element method. Later, Viana examined the Local &adi
dimensional static problems [28]. Later Maréchal examittee Point Interpolation Method to model 2-D eddy current profe
application of DEM as a post-processing tool for CEM [29]][30[52]. The method yielded good agreement compared to the
More recently, the Diffuse Element method has been usedanalytical solution. In both [51] and [52] Viana used thecal
electromagnetic device optimisation [31] [32]. Multiqguadric approach and the local weak form technique. The
In 1998 the Moving Least Square Reproducing Kernel Partigsocedure results in a truly mesh-free method, alleviatimg
Method (MLSRKPM) was applied to model two-dimensionaheed for a background mesh and constraint techniques tesnpo
static electromagnetic problems [33] [34]. This technigeie the essential boundary condition.

modified version of the Element-Free Galerkin where the ML¥ery recently the use of the SPH to model time-domain Maxwell
approximation is replaced by the MLSRKPM approximatiorequations was proposed in [53]. This procedure uses the SPH
Viana also presented a comparison between both procechules@pproximation function to represent the fiel#andH, in the
showed that the MLSRKPM yields better accuracy [34]. Resuliinite difference time domain scheme. The nodes, or pasticle
were also compared with FEM. as they are normally referred to in the SPH, are arranged in a
The Element-Free Galerkin method has been applied to modsiform grid, similar to theveegrid [54]. The absorbing bound-
small gaps between conductors [35], static and quasistary conditions, traditionally used in the Finite Differentime
problems [36] and to model the detection of cracks by puls&bmain (FDTD), are easily implemented in the SPH procedure.
eddy current in Non-Destructive Testing [37]. The application of SPH to model time domain electromagnetic
A combined FEM and EFG technique was used in [38] and [39jroblems may open a new range of possibilities in Computatio
The proposed technique suggested the use of a coarse Fillgctromagnetics Modelling.

Element mesh andree-nodes(meshless) as a refinement tooA combination of PIM and BEM, name®oundary Mesh-
for the FEM solution. Théree-nodeshould be added in regionsless Method(BMLM), was proposed in [S5] to model two-
subjected to sharp gradients. The method was successfdly udimensional transient electromagnetics problems. Theqsed

to investigate 3-D eddy current problems [38]. method uses the advantages of BEM in reducing the dimen-
The Element-Free Galerkin has also been successfully eappl$ionality of the problem under investigation, and then ubes
to model Magnetohydrodynamics [40]. PIM approximation technique in one dimension, avoiding the

The Point Collocation Fast Moving Least Square Reproducisipgularity problem of the interpolation matrix. The autho
Kernel method was introduced and applied to model tw¢ointed out that the BMLM is elegant and efficient. Their fesu
dimensional electromagnetics problems [41]. Kim propoaed were compared to the analytical solution and showed verylgoo
alternative formulation to the MLS-RKPM that uses a vamablagreement. However, applying this method to higher dinterssi
dilation parameter, which allows a more flexible algorithnda may lead to difficulties due to the inherent problems of PIM in
improves the accuracy. terpolation that leads to singularities of the interpalatmatrix.
Several aspects of the meshless formulation have beerntiinves

gated under the CEM context such as the interface between dif IV. CONCLUSIONS

ferent regions, boundary conditions [42] [43] [44], and hless Meshless methods theory is still in its infancy comparechwit
nodal distribution [45]. that of Finite Elements and Finite Differences. HowevertHa
Different meshless methods have been proposed to modekg decade the pace of developmentnoésh-freetheory has
two-dimensional power transformer. In [46] the Waveleg/Bent increased as a result of intensive research. Some claim that
Free Galerkin was proposed. This technique used the salcali® proper mathematical analysis has been performed on these
Wavelet-Element Free Galerkin method combined with a singhethods, others that there is a need for proper classificatio
layer of Finite Element mesh along the boundary containig these methods, claiming that methods based on the Galerki
essential boundary conditions. In [47] the Meshless Loe#ld?-  formulation are not trulynesh-frealue to the use of background
Galerkin based on the MLS approximation modified by theells. Collocation point methods are said to be truly mesksf
jump functionwas used. Lagrange Multipliers were employegiowever, the procedure is known for its instability and low
to enforce the essential boundary conditions. In [48] a foybraccuracy. On the other hand the Galerkin procedure is stable
Wavelet and Radial basis function was investigated. Thékadand more accurate. The application of meshless methods to
basis functions approximation method is used along the®atte CEM has not yet made a great contribution. However, from the
boundaries to enforce the essential boundary conditiona irfew publications found, one can verify that these methodisr of
straightforward manner. advantages either on their own or coupled with FEM and more
A coupled Meshless Local Petrov-Galerkin and FEM was inwvesinvestigation is needed in order to take full advantage ef¢h
gated in [49] to model a two-dimensional electrostatichfgm. procedures.

Meshless Radial Basis Functions have also been appliedtb CE
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