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Abstract 
This paper shows that the equations of elec-
tromagnetism can be directly obtained in a finite 
(=discrete) form, i.e. without going throught the 
differential formulation. This finite formulation is a 
natural extension of the network theory to electro-
magnetic field and it is suitable for computational 
electromagnetics. 

1. Introduction 
Computational electromagnetism requires the 
transformation of Maxwell's differential equations into 
algebraic equations. This is obtained using one of the 
many discretization methods such as Finite Difference 
Method (FDM); Finite Difference in Time Domain 
(FDTD); Finite Element Method (FEM); Boundary 
Element Method (BEM); Edge Element Method 
(EEM); etc. 

Even in Finite Volume Method (FVM) and in Finite 
Integration Theory (FIT), which both use use an 
integral formulation, one use integrals of field 
functions the last being indispensable ingredients of the 
differential formulation. 

A question arises: is it possible to express the laws 
of electromagnetism directly by a set of algebraic 
equations, instead of obtaining them from a 
discretization process applied to differential 
equations? 

The answer is: Yes, it is possible, it is easy and it 
can be immediately used for computation. We are 
introducing an alternative to differential formulation. In 
order to display field laws in a finite formulation, we 
must make use of two different classifications of 
physical quantities. 

1.1. Configuration, source and energy 
variables 

A first classification is based on the role that every 
physical variable plays in a theory. This leads to three 
classes of variables: configuration, source and energy 
variables as shown in Table 1. In every physical field 
we can find: 

• Configuration variables that describe the 
configuration of the field or of the system. These 
variables are linked one another by operations of 
sum, difference, limit, derivative and integral. 

• Source variables that describe the sources of the 
field or the forces acting on the system. These 
variables are linked one another by operations of 
sum, difference, limit, derivative and integral. 

• Energy variables that are obtained as the product 
of a configuration variable by a source one. These 
variables are linked one another by operations of 
sum, difference, limit, derivative and integral. 

Table 1: The three classes of variables of electromagnetism.  

CONFIGURATION VARIABLES: 
gauge function χ  
electric voltage (impulse) ( )UU,  
e.m.f. (impulse) ( )EE,  
electric field vector E  
magnetic flux Φ  
electric potential (impulse) ( )VV,  
magnetic vector potential A  
magnetic induction B  

SOURCE VARIABLES: 
electric charge content cQ  

electric charge flow fQ  
electric current density J  
electric flux Ψ  
electric induction D  
magnetic field strength H  
magnetic voltage (impulse) m( )UmU ,  
m.m.f. (impulse) m( )FmF ,  
magnetic scalar potential mV  
dielectric polarization P  
magnetization M  

ENERGY VARIABLES: 
work, heat W,Q  
electric energy density ew  
magnetic energy density mw  
Poynting vector S  
electromagnetic momentum G  
momentum density g  
electromagnetic action A  
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1.2. Global and field variables 
A second classification distinguish between global 
variables and field variables. Global variables are 
those commonly called integral variables: we avoid the 
last expression because it refers to an integration 
process performed on field variables. 

We must emphasize that physical measurements 
deal mainly with em global variables: we can directly 
measure voltages, fluxes, charge content and charge 
flows, not field vectors. Field variables are needed in a 
differential formulation because the very notion of 
derivative refers to point functions. On the contrary a 
global quantity refers to a system, to a space or time 
element, such as lines, surfaces, volumes, intervals, i.e. 
it is a domain function. Thus a flow meter measures the 
electric charge that crosses a given surface in a given 
time interval. A magnetic tensiometer measures the 
magnetic voltage impulse referred to a line and a time 
interval. The corresponding physical quantities are 
associated with extensive space and extensive time 
elements, not only with points and instants 

One fundamental advantage of global variables is 
that they are continuous through the separation surface 
of two materials while the field variables are 
discontinuous. This implies that the differential 
formulation is restricted to regions of material 
homogeneity. When this is not the case it is necessary 
to break the domain in subdomains, one for each 
material, and to introduce jump conditions. If we think 
about the great number of different materials which we 
can find in a real device, we can see that the 
idealization required by differential formulation is too 
restrictive for the present technology. 

This shows that the differential formulation imposes 
derivability conditions on field functions that are 
restrictive from the physical point of view. On the 
opposite a direct finite formulation based on global 
variables can hold material discontinuities, i.e. does not 
add regularity conditions to those requested by the 
physical nature of the problem. 

To help the reader accustomed to think in terms of 
traditional field variables, we first examine the global 
variables corresponding to traditional field functions: 

c f
mU UΦ Ψ

ρ J B D E H

Q Q
 

(1) 

These are collected in Table 2. This table shows that 
integral variables arise by integration of field functions 
on space and time domains i.e. lines, surfaces, volumes 
and time intervals. The time integral of a physical 
variable, say U , will be called its impulse and will be 
denoted by the corresponding calligraphic letter, say 
U . 

It is remarkable that all global configuration 
variables have the dimension of a magnetic flux and 
that all global source variables have the dimension of a 
charge. The product of a global configuration variable 

and a global source variable has the dimension of an 
action (energy x time). 

1.3. Cell complexes 
It is well known that there is a strict link between 
physics and geometry. In spite of this, it is not usually 
stressed that global physical variables are naturally 
associated with space and time elements, i.e. points, 
lines, surfaces, volumes, instants and intervals. 

In the differential formulation points play a 
fundamental role: field functions are point functions. In 
order to associate points with numbers we then 
introduce coordinate systems. 

In finite formulation we need to consider not only 
points ( )P  but also lines ( )L , surfaces ( )S and volu-
mes ( )V . We shall call these entities space elements. 

Table 2: Integral (=global) physical variables of electromag-
netism and corresponding field functions. 

configuration variables 
(unit: weber)  

source variables 
(unit: coulomb) 

dV t= ∫T
v   c dQ Vρ= ∫V%

 

= d∫ "
L

A Lp  f d dQ t= ∫ ∫T S
J S

%%
"  

d d t= ∫ ∫T L
E L"U    dΨ = ∫% "

S
D S  

dΦ = ∫ "
S

B S   m d d t= ∫ ∫T L
H L

% %
"U  

The natural substitute of coordinate systems are cell 
complexes. They exhibit vertices, edges, faces and cells 
that are representative of the four spatial elements. 

Once we have introduced a cell complex we can 
consider a dual complex. If we make use of a 
simplicial complex as a primal complex, then the 
commonst choices are either the barycentres of every 
simplex or the circumcentres (in 2D) and the circum-
spheres (in 3D). In this paper we consider only 
circumcentres and circumspheres. Since the straight 
line connecting the circumcentres of two adjacent 
simplexes in 2D is orthogonal to the common edge the 
dual polygon thus obtained has its sides orthogonal to 
the common edge. This is called Voronoi polygon in 
2D and Voronoi polyhedron in 3D. The circumcentres 
have the disadvantage that for triangles with obtuse 
angles they lie outside the triangle. This is inconvenient 
when the circumcentre of one obtuse triangle goes 
beyond the one of the adjacent triangle with the 
common sides. This is avoided when the primal tri-
angulation satisfies the Delaunay condition. This leads 
us to consider only Delaunay-Voronoi complexes, as 
we shall do in this paper. While in coordinate systems 
it is preferable to deal with orthogonal coordinate 
systems, in a simplicial complex it is preferable to deal 
with a Delaunay complex and its associated Voronoi 
complex as dual, as shown in Figure 1. 

Figure 1: Three kinds of dual entities: those of the first and 
second columns satisfy the orthogonality condition. 
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1.4. Inner and outer orientation 
The notions of inner and outer orientation of a space 
element play a pivotal role in electromagnetism as well 
as in all physical theories.  

Inner orientation. Points can be oriented to be 
``sources" or ``sinks". The notion of source and sink, 
borrowed from fluid dynamics, can be used to define 
an inner orientation of points because it allows to 
maintain the notion of incidence number from lines and 
points. A line is endowed with inner orientation when 
we choose a direction on the line. A surface is endowed 
with inner orientation when its boundary has an inner 
orientation. A volume is endowed with inner 
orientation when its boundary is so. The four space 
elements endowed with inner orientation will be 
denoted P ,L,S,V . 

Outer orientation. In order to write a balance we need 
a notion of exterior of a volume, because we speak of 
charge contained inside the volume. This is usually 
done by fixing outwards or inwards normals to the 
volume boundary. A surface is endowed with outer 
orientation when one of its faces has been chosen as 
positive and the other as negative: this is equivalent to 
fixing the direction of an arrow crossing the surface 
from the negative to the positive face. We need the 
outer orientation of a surface when we consider a flow 
crossing the surface. A line is endowed with outer 
orientation when a direction of rotation around the line 
has been defined: for example let us think to the 
rotation of the polarization plane of a ligth beam. A 
point is endowed with outer orientation when all line 
segments with their origin in the point have an outer 
orientation. Let us think, for example, of the sign of the 
scalar magnetic potential of a coil at a point: it depends 
on the direction of the current in the coil. 

The four space elements endowed with outer 
orientation will be denoted %% % %P ,L,S,V  

A cell complex and its dual enjoy a peculiar 
property: once the vertices, edges, faces and cells of the 
primal complex have been endowed with inner 
orientation, then an outer orientation on the cells, faces, 
edges and vertices of its dual is induced. It follows that 
a pair formed by a cell complex and its dual is the 
natural frame to exhibit all space elements and their 
orientations. 

1.5. Cell complex in time 
Let us consider a given interval on the time axis and di-
vide it into small time intervals, as shown in Figure 2. 
A primal instant I  is oriented as sink, such as space 
points. A primal interval T  will be 

Figure 2: Cell complex on time axis and its dual. 

endowed with an inner orientation, i.e. it is oriented 
towards increasing time. If we choose an instant inside 
every time interval we obtain a dual instant %I  that is 
authomatically endowed with an outer orientation. The 
interval %T  between two dual instants is a dual interval 

and it is automatically endowed with an outer 
orientation. 

In this fashion, every instant of the primal complex 
there corresponds an interval of the dual and every 
interval of the primal corresponds an instant of the 
dual. Thus we have the correspondence ↔ %I T  and 

↔%I T  and this is a duality map. 

1.6. Global variables and space-time 
elements 

From the analysis of a great number of physical 
variables of classical fields we can infer [3], [4] that 

FIRST PRINCIPLE: Global configuration 
variables are associated with space and time 
elements which are endowed with inner 
orientation while global source variables are 
associated with space and time elements which 
are endowed with outer orientation. 

This principle gives the reason for which 
differential forms are used in electromagnetism [5]. 

The reason for associating source variables with 
outer orientation is that source variables are used in 
balance equations and a balance requires a volume with 
an outer orientation (outwards or inwards normals). In 
short: 

configuration variables source variables 
inner orientation outer orientation 

This principle offers a rational criterion for which  

Table 3: Global variables of electromagnetism. 

global physical variable symbol 
electric potential impulse [ ]V T P,  

electric voltage impulse [ ],T LU  

e.m.f. impulse [ ],T LE  

magnetic flux [ ],I SΦ  

electrokinetic momentum [ ]p ,I L  

magnetic potential impulse m ,  T P% %V  

magnetic voltage impulse m[ , ]U % %T L  

m.m.f. impulse m[ , ]F % %T L   

electric flux ,  I S%%Ψ  

electric charge content cQ ,  I V% %  

electric charge flow fQ ,  T S%%  

global variables of every physical theory can be 
associated to space and time elements and is useful in 
computational electromagnetism. Figure 3 shows this 
association for physical variables of electromagnetism. 

It is important to note that each one of the six 
variables of Eq.(1) admits an operational definition [7]. 
We can say that the role of the dual complex is to form 
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a reference structure to which source variables can be 
referred. 

The space and time association of global elec-
tromagnetic variables is summarized in Table 3. 

Figure 3: Global physical variables are associated with 
elements of a cell complex and its dual.  

1.7. Physical laws and space-time 
elements. 

The first principle states that all global physical 
variables refer to oriented space and time elements. 
From the analysis of a great number of physical 
variables of classical fields one can infer [3], [4] the 

SECOND PRINCIPLE: In every physical theory 
there are physical laws that link global 
variables referred to an oriented space-time 
element, say ΩΩΩΩ , with others referred to its 
oriented boundary, say ∂ΩΩΩΩ  

The field laws of electromagnetism satisfy this 
principle.This principle motivates the role of exterior 
differential on differential forms [5]. 

1.8. Field laws in global form  
Experiments lead us to infer the following four laws of 
electromagnetism (refer to Figure 4):  

Figure 4: Field laws are associated with space and time 
elements. 

• The electromotive force impulse E  referred to the 
boundary ∂S  of a surface endowed with inner 
orientation during a time interval T  is opposite to 
the magnetic flux Φ  variation across the surface 
S  in the same interval (Faraday). 

• The magnetic flux Φ  referred to the boundary ∂V  
of a volume V  endowed with inner orientation 
vanishes at any instant I  (Gauss). 

• The magnetomotive force impulse mF  referred to 

the boundary ∂S%  of a surface endowed with outer 
orientation in a time interval T%  is equal to the sum 
of the electric charge flow fQ  across the surface 

S%  in that time interval and the electric flux Ψ  
variation across the surface S%  in such interval 
(Ampère-Maxwell). 

• The electric flux Ψ  across the boundary ∂V%  of a 
volume endowed with outer orientation at any 
instant %I  is equal to the electric charge cQ  

contained inside the volume V%  at such instant 
(Gauss). 

In formulae: 

[ , ] [ , ] [ , ]− +∂ = −T S I S I SΦ ΦE  

[ ] 0,∂ =I VΦ  
f

m[ ] [ ] [ ] [ ], , , Q ,+ −∂ = − +T S I S I S T S% % % %% % % %F Ψ Ψ  
c[ ] [ ], Q ,∂ =I V I V% % % %Ψ  

(2) 

Equations (2) are the four laws of electro-
magnetism in the finite formulation we were searching 
for [7]. These algebraic equations enjoy the following 
properties: 

• they link physical variables of the same kind, i.e. 
configuration variables with configuration 
variables and source variables with source 
variables; 

• they are valid in whatever medium and then they 
are free from any material parameter; 

• they are valid for whatever surface and whatever 
volume and then they are valid both in the large 
and in the small; 

• they do not involve metrical notions, i.e. lengths, 
areas, measures of volumes and durations are not 
required. 

These properties show that field equations do not 
require infinitesimal space elements and then they are 
not responsible for differential formulation. 

These four laws can be expressed without recourse 
to cell complexes. They are the finite formulation of 
field laws corresponding to Maxwell's equations. 

Local formulation. In order to obtain a set of algebraic 
equations we must introduce a cell complex and its 
dual. All elements must be labelled. Let ,α βl s  be the 

edges and faces of the primal complex respectively; βl%  
and αs%  the same for the dual complex; 

hc ,d ,c ,d%%βα κβ αβ α , the incidence numbers. 
When equations (2) are applied to the cor-

responding cells of the two complexes, we obtain a 
local form of the field equations of the electromagnetic 
field in a finite setting. We can write 

[ ] 0n+1 n+1 nc , , ,   + − =  ∑ l t s t sβα α β β
α

Φ ΦE ττττ  

0nd ,κβ β
β

Φ   = ∑ t s  

[ ]f
m n n+1 n nc , , , Q ,    − + =    ∑ l t s t s s% % %% % %% % %αβ β α α α

β
Ψ ΨF τ ττ ττ ττ τ

c
h n n hd , Q ,α α

α
Ψ    =   ∑ t s t v% % %% %  

(3) 
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For computational purposes it is useful to perform the 
following changes of symbols: n

n ,  → t sβ βΦ Φ ; 
1 2n /

n , +  → t s% %α αΨ Ψ etc. In particular the two evolu-

tion equations can be written as ( c c=%αβ βα , see [7]) 

1 1 2n n n /c+ += −∑β β βα α
α

Φ Φ E  

( ) ( )1 2 1 2 f
m

nnn / n / c Q+ −= + −∑α α βα β αβ
Ψ Ψ F  

(4) 

This gives rise to the leapfrog algorithm. 

1.9. Constitutive laws  
The equations that link the source variables with 
configuration ones are constitutive or material 
equations. In a region of uniform field the three 
constitutive equations of electromagnetism in finite 
form and for orthogonal duals ⊥s l%α α are 

[ ],n n

n

,
s l

   = ∈
t s l% %

%

α α

α α

Ψ
τ

E ττττ
 

m ,nn

n

,

s l

     =
lt s %%

%%

ββ

β α

Φ
µ

τ

F ττττ
 

[ ] [ ] [ ]f
1

1 1

, ,1
2

n n n

n n n

Q ,
s l l

+

+ +

 
= + 

 

s l l%%

% %
α α α

α α α
σ

τ τ τ
E Eτ τ ττ τ ττ τ ττ τ τ

 

(5) 

in which n n, , l , l , s , s%% %α β β ατ τ , are the extensions 
of the corresponding elements. To explain the 
particular form of Ohm's law let us remark that while 
the electric charge fQ  is referred to dual intervals, the 
electric tension impulse E  is referred to primal ones. 
These equations are valid if cells are cubes or they 
belong to a Delaunay-Voronoi complex, as shown in 
Figure 1. In these cases 1-cells of the dual are 
orthogonal to the primal 2-cells and viceversa. The 
orthogonality condition is not necessary, and also bary-
centers may be used to define the dual complexes [2].  

The main properties of constitutive laws are: 

• They are valid in regions in which the field is 
uniform because they are tested under such 
conditions. 

• They link a variable referred to a p− cell of a 
complex with the dual ( )n p− − cell of the dual 
complex. This geometrical property is not apparent 
in differential formulation. 

• They contain material parameters. 

• They require metrical notions such as length, 
areas, volumes and orthogonality. 

While field equations in finite form describe the 
corresponding physical laws exactly, the constitutive 
ones in finite form describe the corresponding physical 
laws approximately because they are validated in 
regions of uniform field. 

Combining the two set of equations, the field and 
the constitutive ones, we obtain a set of algebraic 
equations. 

At this point we have two alternatives:  

1. To perform the limit process on the dimensions of 
the cells in order to obtain a uniform field at the 
limit. This is the traditional way that leads to 
differential formulation. 

2. To make the approximation that the field is 
uniform inside every cell. In this way we obtain a 
finite formulation. 

The last choice is the one pursued in this paper. 

1.10. Comparison with other methods. 
Since the distinction between the two classes of 
physical variables is not commonly done and since it is 
not recognized that two kind of orientations are needed, 
it follows that the differential formulation uses only 
one kind of infinitesimal cells. It follows that FEM, 
arising from a discretization of differential equations, 
ignores the need of two dual complexes and therefore 
uses only one complex formed by the elements. In 
1966 Yee [10], using a cartesian complex and an 
appropriate choice of points at which the various field 
components are to be evaluated, opened the way to the 
introduction of a pair of dual complexes called by 
Weiland [8], the electric and magnetic grids. 
Nevertheless the two complexes were not justified by 
physical considerations but only by computational 
advantages. In the realm of differential forms the two 
kinds of orientation give rise to normal and twisted 
forms [1, p.183]. 

1.11. Conclusion 
It is possible to express both field and constitutive laws 
of electromagnetism in a finite (i.e. algebraic) form 
starting directly from experimental facts, i.e. avoiding 
the passage through the differential formulation. This 
provide a set of algebraic equations that can be directly 
used in computational electromagnetism. The unique 
approximation lies in the hypotesis that inside every 
simplex the field is uniform. If we use an adaptive 
simplicial complex we can reduce the size of the 
simplexes in the regions where  global variables 
undergo large variations. Doing so, the hypotesis of 
uniformity inside every simplex can be under control. 

The finite formulation can easily handle inhomoge-
neous and anisotropic materials (this is of particular 
interest when dealing with absorbing boundary con-
ditions) and can easily handle concentrated sources 
because infinities do not appear. 
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